

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATION COURSE

ON

JAVA SERVER PAGES

COURSE MATERIAL

JAVA SERVER PAGES

JSP technology is used to create web application just like Servlet technology. It can be

thought of as an extension to Servlet because it provides more functionality than servlet such as

expression language, JSTL, etc. A JSP page consists of HTML tags and JSP tags. The JSP pages

are easier to maintain than Servlet because we can separate designing and development. It provides

some additional features such as Expression Language, Custom Tags, etc.

Advantages of JSP over Servlet

There are many advantages of JSP over the Servlet. They are as follows:

1) Extension to Servlet

JSP technology is the extension to Servlet technology. We can use all the features of the Servlet

in JSP. In addition to, we can use implicit objects, predefined tags, expression language and

Custom tags in JSP, that makes JSP development easy.

2) Easy to maintain

JSP can be easily managed because we can easily separate our business logic with presentation

logic. In Servlet technology, we mix our business logic with the presentation logic.

3) Fast Development: No need to recompile and redeploy

If JSP page is modified, we don't need to recompile and redeploy the project. The Servlet code

needs to be updated and recompiled if we have to change the look and feel of the application.

4) Less code than Servlet

In JSP, we can use many tags such as action tags, JSTL, custom tags, etc. that reduces the code.

Moreover, we can use EL, implicit objects, etc.

The Lifecycle of a JSP Page

The JSP pages follow these phases:

o Translation of JSP Page

o Compilation of JSP Page

o Classloading (the classloader loads class file)

o Instantiation (Object of the Generated Servlet is created).

o Initialization (the container invokes jspInit() method).

o Request processing (the container invokes _jspService() method).

o Destroy (the container invokes jspDestroy() method).

jspInit(), _jspService() and jspDestroy() are the life cycle methods of JSP.

As depicted in the above diagram, JSP page is translated into Servlet by the help of JSP translator.

The JSP translator is a part of the web server which is responsible for translating the JSP page into

Servlet. After that, Servlet page is compiled by the compiler and gets converted into the class file.

Moreover, all the processes that happen in Servlet are performed on JSP later like initialization,

committing response to the browser and destroy.

Creating a simple JSP Page

To create the first JSP page, write some HTML code as given below, and save it by .jsp extension.

We have saved this file as index.jsp. Put it in a folder and paste the folder in the web-apps directory

in apache tomcat to run the JSP page.

index.jsp

Let's see the simple example of JSP where we are using the scriptlet tag to put Java code in the

JSP page. We will learn scriptlet tag later.

<html>

<body>

<% out.print(2*5); %>

</body>

</html>

It will print 10 on the browser.

How to run a simple JSP Page?

Follow the following steps to execute this JSP page:

o Start the server

o Put the JSP file in a folder and deploy on the server

o Visit the browser by the URL http://localhost:portno/contextRoot/jspfile, for example,

http://localhost:8888/myapplication/index.jsp

Do I need to follow the directory structure to run a simple JSP?

No, there is no need of directory structure if you don't have class files or TLD files. For example,

put JSP files in a folder directly and deploy that folder. It will be running fine. However, if you are

using Bean class, Servlet or TLD file, the directory structure is required.

The Directory structure of JSP

The directory structure of JSP page is same as Servlet. We contain the JSP page outside the WEB-

INF folder or in any directory.

JSP Index

JSP Tutorial

 Life cycle of JSP

 JSP API

 JSP in Eclipse

JSP scripting elements

o JSP scriptlet tag

o JSP expression tag

o JSP declaration tag

9 Implicit Objects

JSP Out

o JSP Request

o JSP Response

o JSP Config

o JSP Application

o JSP Session

o JSP PageContext

o JSP Page

o JSP Exception

JSP Directive Elements

o JSP page directive

o JSP include directive

o JSP taglib directive

https://www.javatpoint.com/creating-jsp-in-eclipse-ide
https://www.javatpoint.com/jsp-scriptlet-tag
https://www.javatpoint.com/jsp-expression-tag
https://www.javatpoint.com/jsp-declaration-tag
https://www.javatpoint.com/jsp-implicit-objects
https://www.javatpoint.com/request-implicit-object
https://www.javatpoint.com/response-implicit-object
https://www.javatpoint.com/config-implicit-object
https://www.javatpoint.com/application-implicit-object
https://www.javatpoint.com/session-implicit-object
https://www.javatpoint.com/pageContext-implicit-object
https://www.javatpoint.com/page-implicit-object
https://www.javatpoint.com/exception-implicit-object
https://www.javatpoint.com/jsp-page-directive
https://www.javatpoint.com/jsp-include-directive
https://www.javatpoint.com/jsp-taglib-directive

JSP Exception

Action Elements

o jsp:forward

o jsp:include

o Java Bean class

o jsp:useBean

o set & getProperty

o Displaying applet in JSP

Expression Language

MVC in JSP

JSTL

JSP Custom tags

o Example of Custom Tag

o Attributes

o Iteration

o Custom URI

JSP Pagination

o JSP Pagination Example

JSP CRUD

o JSP CRUD Example

Development in JSP

o Registration Form

https://www.javatpoint.com/exception-handling-in-jsp
https://www.javatpoint.com/exception-handling-in-jsp
https://www.javatpoint.com/jsp-action-tags-forward-action
https://www.javatpoint.com/jsp-include-action
https://www.javatpoint.com/java-bean
https://www.javatpoint.com/jsp-useBean-action
https://www.javatpoint.com/jsp-setProperty-and-jsp-getProperty-action-tag
https://www.javatpoint.com/displaying-applet-in-jsp
https://www.javatpoint.com/displaying-applet-in-jsp
https://www.javatpoint.com/EL-expression-in-jsp
https://www.javatpoint.com/MVC-in-jsp
https://www.javatpoint.com/MVC-in-jsp
https://www.javatpoint.com/jstl
https://www.javatpoint.com/custom-tags
https://www.javatpoint.com/example-of-jsp-custom-tag
https://www.javatpoint.com/attributes-in-jsp-custom-tag
https://www.javatpoint.com/Iteration-using-jsp-custom-tag
https://www.javatpoint.com/custom-uri-in-jsp-custom-tag
https://www.javatpoint.com/custom-uri-in-jsp-custom-tag
https://www.javatpoint.com/pagination-in-jsp
https://www.javatpoint.com/pagination-in-jsp
https://www.javatpoint.com/crud-in-jsp
https://www.javatpoint.com/crud-in-jsp
https://www.javatpoint.com/registration-form-in-jsp

o Login Form

o Uploading File

o Downloading File

The JSP API

1. The JSP API

2. javax.servlet.jsp package

3. The JspPage interface

4. The HttpJspPage interface

The JSP API consists of two packages:

1. javax.servlet.jsp

2. javax.servlet.jsp.tagext

javax.servlet.jsp package

The javax.servlet.jsp package has two interfaces and classes.The two interfaces are as follows:

1. JspPage

2. HttpJspPage

The classes are as follows:

o JspWriter

o PageContext

o JspFactory

o JspEngineInfo

o JspException

o JspError

https://www.javatpoint.com/login-form-in-jsp
https://www.javatpoint.com/uploading-file-to-the-server-in-jsp
https://www.javatpoint.com/downloading-file-from-the-server-in-jsp
https://www.javatpoint.com/downloading-file-from-the-server-in-jsp
https://www.javatpoint.com/jsp-api
https://www.javatpoint.com/jsp-api#jsppackage
https://www.javatpoint.com/jsp-api#jsppage
https://www.javatpoint.com/jsp-api#httpjsppage

The JspPage interface

According to the JSP specification, all the generated servlet classes must implement the JspPage

interface. It extends the Servlet interface. It provides two life cycle methods.

Methods of JspPage interface

1. public void jspInit(): It is invoked only once during the life cycle of the JSP when JSP

page is requested firstly. It is used to perform initialization. It is same as the init() method

of Servlet interface.

2. public void jspDestroy(): It is invoked only once during the life cycle of the JSP before

the JSP page is destroyed. It can be used to perform some clean up operation.

The HttpJspPage interface

The HttpJspPage interface provides the one life cycle method of JSP. It extends the JspPage

interface.

Method of HttpJspPage interface:

1. public void _jspService(): It is invoked each time when request for the JSP page comes

to the container. It is used to process the request. The underscore _ signifies that you cannot

override this method.

Creating JSP in Eclipse IDE with Tomcat server

1. Creating JSP in Eclipse IDE with Tomcat

1. Create a Dynamic web project

2. create a jsp

3. start tomcat server and deploy the project

o Create a Dynamic web project

o create a jsp

o start tomcat server and deploy the project

1) Create the dynamic web project

For creating a dynamic web project click on File Menu -> New -> dynamic web project -> write

your project name e.g. first -> Finish.

https://www.javatpoint.com/creating-jsp-in-eclipse-ide
https://www.javatpoint.com/creating-jsp-in-eclipse-ide#step1
https://www.javatpoint.com/creating-jsp-in-eclipse-ide#step2
https://www.javatpoint.com/creating-jsp-in-eclipse-ide#step3

2) Create the JSP file in eclipse IDE

For creating a jsp file explore the project by clicking the + icon -> right click on WebContent ->

New -> jsp -> write your jsp file name e.g. index -> next -> Finish.

Now JSP file is created, let's write some code.

3) Start the server and deploy the project:

For starting the server and deploying the project in one step Right click on your project -> Run As

-> Run on Server -> choose tomcat server -> next -> addAll -> finish.

If you are using Eclipse IDE first time, you need to configure the tomcat server First. Click for How

to configure tomcat server in eclipse IDE

Now start the tomcat server and deploy project

For starting the server and deploying the project in one step Right click on your project -> Run As

-> Run on Server -> choose tomcat server -> next -> addAll -> finish.

https://www.javatpoint.com/how-to-configure-tomcat-server-in-eclipse-ide
https://www.javatpoint.com/how-to-configure-tomcat-server-in-eclipse-ide

Yes, Let's see JSP is successfully running now.

JSP Scriptlet tag (Scripting elements)

1. Scripting elements

2. JSP scriptlet tag

3. Simple Example of JSP scriptlet tag

4. Example of JSP scriptlet tag that prints the user name

In JSP, java code can be written inside the jsp page using the scriptlet tag. Let's see what are the

scripting elements first.

JSP Scripting elements

The scripting elements provides the ability to insert java code inside the jsp. There are three types

of scripting elements:

https://www.javatpoint.com/jsp-scriptlet-tag
https://www.javatpoint.com/jsp-scriptlet-tag#scriptlet
https://www.javatpoint.com/jsp-scriptlet-tag#scriptletex1
https://www.javatpoint.com/jsp-scriptlet-tag#scriptletex2

o scriptlet tag

o expression tag

o declaration tag

JSP scriptlet tag

A scriptlet tag is used to execute java source code in JSP. Syntax is as follows:

1. <% java source code %>

Example of JSP scriptlet tag

In this example, we are displaying a welcome message.

<html>

<body>

<% out.print("welcome to jsp"); %>

</body>

</html>

Example of JSP scriptlet tag that prints the user name

In this example, we have created two files index.html and welcome.jsp. The index.html file gets

the username from the user and the welcome.jsp file prints the username with the welcome

message.

File: index.html

<html>

<body>

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

</body>

</html>

File: welcome.jsp

<html>

<body>

<%

String name=request.getParameter("uname");

out.print("welcome "+name);

%>

</form>

</body>

</html>

JSP expression tag

The code placed within JSP expression tag is written to the output stream of the response. So you

need not write out.print() to write data. It is mainly used to print the values of variable or method.

Syntax of JSP expression tag

1. <%= statement %>

Example of JSP expression tag

In this example of jsp expression tag, we are simply displaying a welcome message.

<html>

<body>

<%= "welcome to jsp" %>

</body>

</html>

Note: Do not end your statement with semicolon in case of expression tag.

Example of JSP expression tag that prints current time

To display the current time, we have used the getTime() method of Calendar class. The getTime()

is an instance method of Calendar class, so we have called it after getting the instance of Calendar

class by the getInstance() method.

index.jsp

<html>

<body>

Current Time: <%= java.util.Calendar.getInstance().getTime() %>

</body>

</html>

Example of JSP expression tag that prints the user name

In this example, we are printing the username using the expression tag. The index.html file gets

the username and sends the request to the welcome.jsp file, which displays the username.

File: index.jsp

<html>

<body>

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

</body>

</html>

File: welcome.jsp

<html>

<body>

<%= "Welcome "+request.getParameter("uname") %>

</body>

</html>

JSP Declaration Tag

1. JSP declaration tag

2. Difference between JSP scriptlet tag and JSP declaration tag

3. Example of JSP declaration tag that declares field

4. Example of JSP declaration tag that declares method

The JSP declaration tag is used to declare fields and methods.

The code written inside the jsp declaration tag is placed outside the service() method of auto

generated servlet.

So it doesn't get memory at each request.

Syntax of JSP declaration tag

The syntax of the declaration tag is as follows:

1. <%! field or method declaration %>

Difference between JSP Scriptlet tag and Declaration tag

Jsp Scriptlet Tag Jsp Declaration Tag

The jsp scriptlet tag can only declare

variables not methods.

The jsp declaration tag can declare variables as

well as methods.

https://www.javatpoint.com/jsp-declaration-tag
https://www.javatpoint.com/jsp-declaration-tag#diff
https://www.javatpoint.com/jsp-declaration-tag#declarationex1
https://www.javatpoint.com/jsp-declaration-tag#declarationex2

The declaration of scriptlet tag is placed

inside the _jspService() method.

The declaration of jsp declaration tag is placed

outside the _jspService() method.

Example of JSP declaration tag that declares field

In this example of JSP declaration tag, we are declaring the field and printing the value of the

declared field using the jsp expression tag.

index.jsp

<html>

<body>

<%! int data=50; %>

<%= "Value of the variable is:"+data %>

</body>

</html>

Example of JSP declaration tag that declares method

In this example of JSP declaration tag, we are defining the method which returns the cube of given

number and calling this method from the jsp expression tag. But we can also use jsp scriptlet tag

to call the declared method.

index.jsp

<html>

<body>

<%!

int cube(int n){

return n*n*n*;

}

%>

<%= "Cube of 3 is:"+cube(3) %>

</body>

</html>

JSP Implicit Objects

1. JSP Implicit Objects

2. out implicit object

3. Example of out implicit object

There are 9 jsp implicit objects. These objects are created by the web container that are available

to all the jsp pages.

The available implicit objects are out, request, config, session, application etc.

A list of the 9 implicit objects is given below:

Object Type

out JspWriter

request HttpServletRequest

response HttpServletResponse

config ServletConfig

application ServletContext

session HttpSession

pageContext PageContext

https://www.javatpoint.com/jsp-implicit-objects
https://www.javatpoint.com/jsp-implicit-objects#out
https://www.javatpoint.com/jsp-implicit-objects#outex

page Object

exception Throwable

1) JSP out implicit object

For writing any data to the buffer, JSP provides an implicit object named out. It is the object of

JspWriter. In case of servlet you need to write:

 PrintWriter out=response.getWriter();

But in JSP, you don't need to write this code.

Example of out implicit object

In this example we are simply displaying date and time.

index.jsp

<html>

<body>

<% out.print("Today is:"+java.util.Calendar.getInstance().getTime()); %>

</body>

</html>

Output

JSP request implicit object

The JSP request is an implicit object of type HttpServletRequest i.e. created for each jsp request

by the web container. It can be used to get request information such as parameter, header

information, remote address, server name, server port, content type, character encoding etc.

It can also be used to set, get and remove attributes from the jsp request scope.

Let's see the simple example of request implicit object where we are printing the name of the user

with welcome message.

Example of JSP request implicit object

index.html

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

welcome.jsp

<%

String name=request.getParameter("uname");

out.print("welcome "+name);

%>

Output

3) JSP response implicit object

In JSP, response is an implicit object of type HttpServletResponse. The instance of

HttpServletResponse is created by the web container for each jsp request.

It can be used to add or manipulate response such as redirect response to another resource, send

error etc.

Let's see the example of response implicit object where we are redirecting the response to the

Google.

Example of response implicit object

index.html

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

welcome.jsp

<%

response.sendRedirect("http://www.google.com");

%>

Output

4) JSP config implicit object

In JSP, config is an implicit object of type ServletConfig. This object can be used to get

initialization parameter for a particular JSP page. The config object is created by the web container

for each jsp page.

Generally, it is used to get initialization parameter from the web.xml file.

Example of config implicit object:

index.html

<form action="welcome">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

web.xml file

<web-app>

<servlet>

<servlet-name>sonoojaiswal</servlet-name>

<jsp-file>/welcome.jsp</jsp-file>

<init-param>

<param-name>dname</param-name>

<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>sonoojaiswal</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

</web-app>

welcome.jsp

<%

out.print("Welcome "+request.getParameter("uname"));

String driver=config.getInitParameter("dname");

out.print("driver name is="+driver);

%>

Output

5) JSP application implicit object

In JSP, application is an implicit object of type ServletContext.

The instance of ServletContext is created only once by the web container when application or

project is deployed on the server.

This object can be used to get initialization parameter from configuaration file (web.xml). It can

also be used to get, set or remove attribute from the application scope.

This initialization parameter can be used by all jsp pages.

Example of application implicit object:

index.html

<form action="welcome">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

web.xml file

<web-app>

<servlet>

<servlet-name>sonoojaiswal</servlet-name>

<jsp-file>/welcome.jsp</jsp-file>

</servlet>

<servlet-mapping>

<servlet-name>sonoojaiswal</servlet-name>

<url-pattern>/welcome</url-pattern>

</servlet-mapping>

<context-param>

<param-name>dname</param-name>

<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>

</context-param>

</web-app>

welcome.jsp

<%

out.print("Welcome "+request.getParameter("uname"));

String driver=application.getInitParameter("dname");

out.print("driver name is="+driver);

%>

Output

6) session implicit object

In JSP, session is an implicit object of type HttpSession.

The Java developer can use this object to set,get or remove attribute or to get session information.

Example of session implicit object

index.html

<html>

<body>

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

</body>

</html>

welcome.jsp

<html>

<body>

<%

String name=request.getParameter("uname");

out.print("Welcome "+name);

session.setAttribute("user",name);

second jsp page

%>

</body>

</html>

second.jsp

<html>

<body>

<%

String name=(String)session.getAttribute("user");

out.print("Hello "+name);

%>

</body>

</html>

Output

7) pageContext implicit object

In JSP, pageContext is an implicit object of type PageContext class.The pageContext object can be used to set,get or

remove attribute from one of the following scopes:

o page

o request

o session

o application

In JSP, page scope is the default scope.

Example of pageContext implicit object

index.html

<html>

<body>

<form action="welcome.jsp">

<input type="text" name="uname">

<input type="submit" value="go">

</form>

</body>

</html>

welcome.jsp

<html>

<body>

<%

String name=request.getParameter("uname");

out.print("Welcome "+name);

pageContext.setAttribute("user",name,PageContext.SESSION_SCOPE);

second jsp page

%>

</body>

</html>

second.jsp

<html>

<body>

<%

String name=(String)pageContext.getAttribute("user",PageContext.SESSION_SCOPE);

out.print("Hello "+name);

%>

</body>

</html>

Output

