4.6 PHASOR DIAGRAM OF A BRUSHLESS PM SNW OR BLPB SYNCHRONOUS MOTOR:

Consider a BLPM SNW motor, the stator carries a balanced $3 v$ winding this winding is connected to a dc supply through an electronic commutator whose switching action is influenced by the signal obtained from the rotor position sensor.

Under steady state operating condition, the voltage available at the input terminals of the armature winding is assumed to be sinusoidally varying three phase balanced voltage. The electronic commutator acts as an ideal inverter whose frequency is influenced by the rotor speed. Under this condition a revolving magnetic field is set up in the air gap which is sinusoidally distributed in space, having a number of poles is equal to the rotor. It rotates in air gap in the same direction as that of rotor and a speed eqlual to the aped of the rotor

Rotor carries a permanent magnet. Its flux density is sine distributed. It also revolved in the air gap with as particular speed

It is assumed that the motor acts as a balanced 3vsystem. Ther4efore it is sufficient to draw the phasor diagram for only one phase. The armature winding circuit is influenced by the following emfs.

1. V-Supply voltage per phase across each winding of the armature.

The magnitude of this voltage depends upon dc voltage and switching techniques adopted.
2. Ef - Emf induced in the armature winding per phase due to sinusoidally varying permanent magnetic field flux.
Magnitude of $\mathrm{Ef}_{\mathrm{f}}=4.44 \mathrm{um}_{\mathrm{m}} \mathrm{K}_{\mathrm{w}} 1 \mathrm{~T}_{\mathrm{ph}}=\mathrm{I} \mathrm{Ef}_{\mathrm{f}} \mathrm{I}$
As per Faradays law of electromagnetic induct5ion, this emf lags behind $v \mathrm{mf}-$ permanent magnet flux enclosed by armature phase winding by 90°.
3. Ea - emf induced in the armature phase winding due to the flux u_{a} set up by resultant armature mmf $v \infty I a$

$$
\begin{gathered}
\text { I } E_{a} I=4.44 f u_{a} K_{w 1} T_{p h} \\
=4.44 f\left(K_{\mathrm{la}}\right) \mathrm{K}_{\mathrm{w} 1} T_{p h} \\
\mathrm{I} \mathrm{E}_{\mathrm{a}} \mathrm{I}=\mathrm{I} \mathrm{la}_{\mathrm{a}} \mathrm{X}_{\mathrm{a}} \mathrm{I} \text { where } \mathrm{X}_{\mathrm{a}}=4.44 \mathrm{f} \mathrm{fK}_{\mathrm{w}} 1 \mathrm{~T}_{\mathrm{ph}}
\end{gathered}
$$

This lags behind v_{a} by 90° or in other words Ea lags behind I_{a} by 90°.
Therefore $\mathrm{Ea}_{\mathrm{a}}=-\mathrm{j} \mathrm{X}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}$
4. $E_{a l}-\mathrm{emf}$ induced in the same armature winding सue to armature leakage flux.

$$
\left|E_{a l}\right|=4.44 \mathrm{f} \emptyset_{a l} K_{v 1} T_{p h}
$$

Figure 4.6.1 phasor diagram of BLPM sine wave motor

[Source: "special electric machines" by R.Srinivasan page:5.3]
$\phi_{m f}$ be the mutual flux set up by the permanent magnet, but linked by the armature winding.
Ef lags behind $\quad \phi_{m f}=\phi_{d}$
AF represents IaRa
FG represents Ia Xs; $\quad \mathrm{FG}$ is perpendicular to I phasor
OG represents V
Angle between the I and is β the torque or power angle.
Power input $=3 \mathrm{VI}$

$$
=3(\mathrm{Eq}+\mathrm{Ia} \mathrm{Ra}+\mathrm{j} \text { I Xs).I }
$$

$=3$ Eq.Ia $+3 I^{2} \quad \mathrm{Ra}+\mathrm{O}$
3 Eq I - electromagnetic power transferred as mechanical power.
$3 I^{2} \mathrm{Ra}$ - copper losss.
Mechanical power developed $=3$ Eq.I
$=3 \mathrm{Eq} \mathrm{I} \cos (90-\beta)$

$$
\begin{aligned}
& =3 \mathrm{Eq} \mathrm{I} \sin \beta \\
& =3 \mathrm{EfI} \sin \beta
\end{aligned}
$$

The motor operates at Ns rpm or 120f/2p rpm
Therefore electromagnetic torque developed $=60 / 2 \mathrm{Ns} \times 3 \mathrm{Eq} \mathrm{I} \sin \beta$

The same phasor diagram can be redrawn as shown in fig with ϕ_{d} or $f_{f m}$ as the reference phasor.

Figure 4.6.2 Phasor Diagram of BLPM sine wave motor with $\phi \mathrm{d}$ or $\Phi \mathrm{mf}$ as reference axis
[Source: "special electric machines" by R.Srinivasan page:5.3]

Further the current I phasor is resolved into two components Id and Iq Id set up mmf along the direct axis (or axis of the permanent magnet)

Iq sets up mmf along quadrature axis (i,e) axis perpendicular to the axis of permanent magnet.

$$
\begin{aligned}
& \mathrm{V}=\mathrm{Eq}+\mathrm{IRa}+\mathrm{j} \mathrm{I} \mathrm{Xs} \\
& \mathrm{I}=\mathrm{Iq}+\mathrm{Id}
\end{aligned}
$$

Therefore $\mathrm{V}=\mathrm{Eq}+\mathrm{Id} \underset{u}{r}+\mathrm{Iq} \underset{\sim}{r}+\mathrm{j}$ Id $\mathrm{Xs}+\mathrm{j}$ Iq Xs
V can be represented as a complex quantity.

$$
\mathrm{V}=\left(V_{r}+\mathrm{j} V_{I P}\right)
$$

From the above drawn phasor.

$$
\mathrm{V}=\left(\mathrm{Id}{\underset{u}{r}}^{r}-\mathrm{Iq} \mathrm{Xs}\right)+\mathrm{j}(\mathrm{Eq}+\mathrm{Iq} \underset{u}{r}+\mathrm{Id} \mathrm{Xs})
$$

I can also be represented as a complex quantity

$$
\begin{aligned}
\mathrm{I}= & =\mathrm{Id}+\mathrm{j} \mathrm{Iq} \\
\text { Power input } & =\operatorname{Re}\left(3 V I^{*}\right) \quad I^{*}-\text { conjugate } \\
& =\operatorname{Re}\left(3\left(\left(\mathrm{Id}{\underset{u}{u}}_{r_{u}}-\mathrm{Iq} \mathrm{Xs}\right)+\mathrm{j}(\mathrm{Eq}+\mathrm{Iq} \underset{u}{r}+\mathrm{Id} \mathrm{Xs})\right)((\mathrm{Id}-\mathrm{j} \mathrm{IQ}))\right)
\end{aligned}
$$

(i,e) power input $=\operatorname{Re}\left(3\left(\mathrm{I}_{d} \mathrm{ra}-\mathrm{Id} \mathrm{Iq} \mathrm{Xs}\right)+(-\mathrm{j} \mathrm{Id} \mathrm{Iq} \mathrm{ra}+\mathrm{j} \quad \mathrm{Xs})+\mathrm{j}(\mathrm{Eq} \mathrm{Id}+\mathrm{Iq} \mathrm{Id}\right.$ ra+Xs $)$
$\left.+\left(\mathrm{Eq} \mathrm{Iq}+\mathrm{I}_{q} \mathrm{ra}+\mathrm{Id} \mathrm{Iq} \mathrm{Xs}\right)\right)$
$=3\left(I_{u}^{2} \mathrm{ra}-\mathrm{Id} \operatorname{lq} \mathrm{Xs}\right)+3\left(\mathrm{Eq} \mathrm{Iq}+\quad I_{u}^{2} \mathrm{ra}+\mathrm{Id} \operatorname{lq} \mathrm{Xs}\right)$
$=3 \mathrm{Eq} \mathrm{Iq}+3\left(I_{u}^{2}+I_{u}^{2}\right) \underset{u}{r}$
$=3 \mathrm{Eq} \mathrm{Iq}+3 I{ }_{u} r$
Electromagnetic power transferred $=3 \mathrm{Eq} \mathrm{Iq}$

$$
=3 \mathrm{EI} \sin \beta
$$

Torque developed $\quad=60 / 2 \pi \mathrm{Ns} .3 \mathrm{EI} \sin \beta$

Note:
In case of salient pole rotors the electromagnetic torque developed from the electrical power.
From eqn. (5.43)

$$
\begin{aligned}
\frac{p}{\omega m} & =3\left[I_{d}^{2} r_{a} I_{-} I_{q} X_{s}\right]+3\left[E_{q} I_{q}+\quad+I_{d} I_{q} X_{s}\right] \\
& =3\left[I_{d}^{2} r_{a} I_{d} I_{q}\left(X_{d}+X_{q}\right)\right]+3\left[E_{q} I_{q}+I_{q}^{2} r_{a}+I_{d} I_{q}\left(X_{d}+X_{q}\right)\right]
\end{aligned}
$$

Power input $=R_{e} 3\left[\left(I_{d} r_{a}-I_{q} X_{s}\right)+j\left(E_{q}+I_{d} X_{s}+I_{q} r_{a}\right)\left(I_{d}-j I_{q}\right)\right]$

$$
\begin{aligned}
& =R_{e} 3\left[\left(\left(I_{d} r_{a}-I_{q}\left(X_{d}+X_{q}\right)\right)+j\left(E_{q}+I_{d}\left(X_{d}+X_{q}\right)+I_{q} r_{a}\right)\left(I_{d}-j I_{q}\right)\right]\right. \\
& =R_{e} 3\left[I_{d}^{2} r_{a}-I_{q}\left(X_{d}+X_{q}\right) I_{d}+E_{q} I_{q}+I_{d} I_{q}^{\prime}+\cup+I_{q}^{2} r_{a}\right] \\
& =3 E_{\varphi} I_{q}+3 I^{2} R_{a}
\end{aligned}
$$

Torque developed for a salient pole machine is given by

$$
\mathrm{T}=\frac{3 p}{\omega_{m}}\left[E_{q} I_{q}+\left(X_{d}-X_{q}\right) I_{d} I_{q}\right] N-m
$$

$\frac{3 p}{\omega_{m}} E_{q} I_{q}=$ magnet alignment torque.
$\frac{3 p}{\omega_{m}}\left(X_{d}-X_{q}\right) I_{d} I_{q}=$ reluctance torque.

In case of surface - magnet motors, the reluctance torque becomes zero.
Therefore, torque developed $=\frac{3 E_{q}{ }^{I} N}{\omega_{m}}-\mathrm{m}$

$$
\mathrm{Or}=\frac{3 P}{\omega} E_{q} \mathrm{~N}-\mathrm{m}
$$

At a given speed, is $\underset{i}{\text { fixed }}$ as it is proportional to speed. Then torque is proportional to q -axis curkent

The linear relationship between torque and current simplifies the controller design and makes the dynamic performance more regular and predictable. The same property is shared by the square wave motor and the e permanent commutator motor.

In the phasor diagram shown in fig. 5.10.

Figure 4.6.2 Phasor Diagram neglecting the effect of resistance Neglecting the effect of resistance, the basic voltage equation [Source: "special electric machines" by R.Srinivasan page:5.3]

As the effect of resistance is neglected

$$
\begin{gathered}
\frac{\dot{V}}{j X_{s}}=\frac{\dot{E}_{q}}{j X_{s}} \dot{I} \\
\dot{I}=\frac{\dot{V} \dot{E}_{q}}{j X_{s}}
\end{gathered}
$$

