Vector Analysis

The quantities that we deal in electromagnetic theory may be either scalar or vectors. There are other class of physical quantities called Tensors: where magnitude and direction vary with co ordinate axes]. Scalars are quantities characterized by magnitude only and algebraic sign. A quantity that has direction as well as magnitude is called a vector. Both scalar and vector quantities are function of time and position. A field is a function that specifies a particular quantity everywhere in a region. Depending upon the nature of the quantity under consideration, the field may be a vector or a scalar field.

Example of scalar field is the electric potential in a region while electric or magneticfields at any point is the example of vector field.

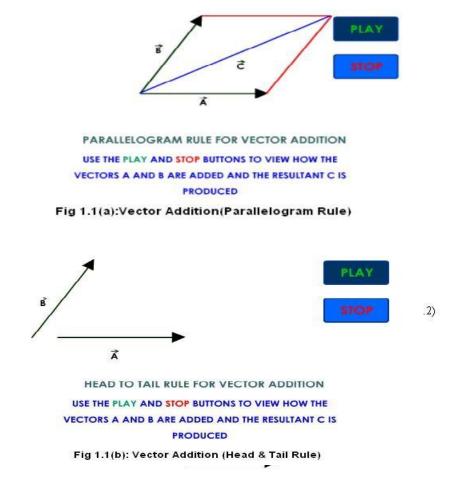
A vector \vec{A} can be written as, $\vec{A} = \hat{\vec{a}} A$, where, $A = |\vec{A}|_{is}$ the magnitude $\hat{\vec{a}} = \frac{A}{|\vec{A}|}_{is}$ and is the unit vector which has \vec{A} nit magnitude

and same direction as that

Two vector \vec{A} and \vec{E} are added together to give another vector \vec{C} . We have

 $\vec{C} = \vec{A} + \underline{\vec{B}}$ (1.1)

Let us see the animations in the next pages for the addition of two vectors, which has tworules: **1: Parallelogram law** and **2: Head & tail rule** as shown in figure 1.1(a), 1.1(b) and 1.2



Vector Subtraction is similarly carried out: $\vec{D} = \vec{A} - \vec{B} = \vec{A} + (-\vec{B})$ (1.2)



Fig 1.2: Vector subtraction

(www.brainkart.com/subject/Electromagnetic-Theory_206/) Scaling of a vector is defined as $\vec{C} = \alpha \vec{B}$, where \vec{C} is scaled version of vector \vec{B} and α is a scalar.

Some important laws of vector algebra are:

$$\vec{A} + \vec{B} = \vec{B} + \vec{A}$$

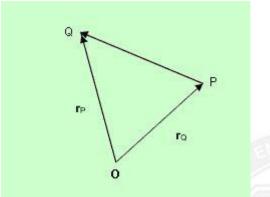
Commutative Law(1.3)

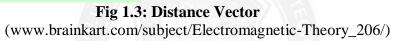
EC8451

ELECTROMAGNETICFIELDS

$$\vec{A} + (\vec{B} + \vec{C}) = (\vec{A} + \vec{B}) + \vec{C}$$
Associative Law....(1.4)
$$\alpha(\vec{A} + \vec{B}) = \alpha \vec{A} + \alpha \vec{B}$$
Distributive Law....(1.5)

The position vector $\stackrel{r_{\mathcal{Q}}}{\stackrel{\rightarrow}{P}}$ of a point *P* is the directed distance from the origin (*O*) to *P*, i.e., $\stackrel{\rightarrow}{r_{\mathcal{Q}}} = \overrightarrow{OP}$ as shown in figure 1.3.





If $\vec{r_p} = OP$ and $\vec{r_p} = OQ$ are the position vectors of the points P and Q then the distance vector

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \overrightarrow{r_p} - \overrightarrow{r_q}$$

Product of Vectors

The two types of vector multiplication are:

Scalar product

 $\vec{A} \cdot \vec{B}$, Vector product $\vec{A} \times \vec{B}$

The dot product between two vectors is defined as

Vector product $\vec{A} \times \vec{B} = |A| |B| \sin \theta_{AB} \cdot \vec{n}$

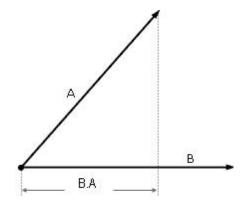


Fig 1.4: Vector dot product

(www.brainkart.com/subject/Electromagnetic-Theory_206/)

The dot product is commutative i.e., $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$ and distributive i.e., $\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$. A subscience ve law does not apply to scalar product as shown in figure 1.4 The vector or cross product of two vectors \vec{A} and \vec{B} is denoted by $\vec{A} \times \vec{B}$. $\vec{A} \times \vec{B}$ is a vector perpendicular to the plane containing \vec{A} and \vec{B} , the magnitude is given by $|A||B|\sin \theta_{AB}$ and direction is given by right hand rule as explained in Figure 1.5.

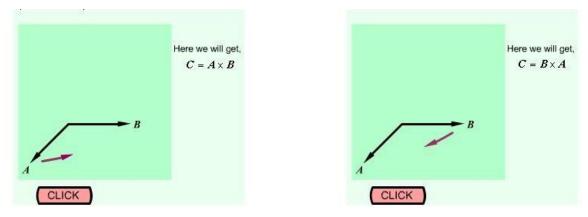
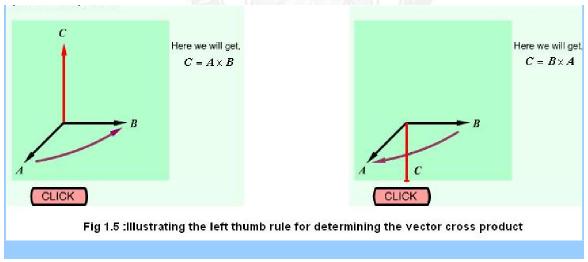


Fig 1.5 :Illustrating the left thumb rule for determining the vector cross product



(www.brainkart.com/subject/Electromagnetic-Theory_206/)

$$\vec{A} \times \vec{B} = a_n AB \sin \theta_{AB} \qquad (1.7)$$

$$\hat{a_n} = \frac{\vec{A} \times \vec{B}}{\left| \vec{A} \times \vec{B} \right|}$$

The following relations hold for vector product.

Scalar and vector triple product :

Scalar triple product.....

$$\vec{A} \cdot \left(\vec{B} \times \vec{C}\right) = \vec{B} \cdot \left(\vec{C} \times \vec{A}\right) = \vec{C} \cdot \left(\vec{A} \times \vec{B}\right)$$

$$\vec{A} \times \left(\vec{B} \times \vec{C}\right) = \vec{B} \left(\vec{A} \cdot \vec{C}\right) - \vec{C} \left(\vec{A} \cdot \vec{B}\right)$$
(1.11)

Vector triple product