<u>UNIT – 1</u>

ELECTRICAL PROPERTIES OF MATERIALS

CONTENTS

1.6. Quantum Free Electron Theory

1.6.1. Basic assumptions of Quantum free electron

1.6.2. Merits of Quantum theory

1.6.3. Demerits of Quantum theory

1.6. Quantum Free Electron Theory

The drawbacks of classical free electron theories were removed by **Sommerfeld in 1928**. Quantum concepts are used in classical theory and hence it is known as quantum free electron theory.

He applied Schrodinger's wave equation and De-Broglie's concept of matter waves to obtain the expression for electron energies. He substituted the quantum statistics of Fermi-Dirac in place of the classical statistics and hence, it is known as the quantum free electron theory.

1.6.1. Basic assumptions of Quantum free electron theory

- The electrons are considered as free electron gas.
- The electrons possess wave nature.
- Free electrons obey Fermi-Dirac statistics and Pauli's exclusion principle.
- The free electron is fully responsible for electrical conduction.
- The allowed energy levels of an electron are quantized.
- The correct values of electrical conductivity, thermal conductivity, specific heat, optical absorption, ferromagnetic susceptibility are determined by quantum free electron theory of solids.

1.6.2. Merits of Quantum theory

- ◆ In this theory, the electrons are treated quantum mechanically rather than classically.
- ✤ Quantum theory successfully explains the ohm's law.
- It explains the electrical conductivity, thermal conductivity, photoelectric effect, Compton effect and specific heat capacity of metals.

1.6.3. Demerits of Quantum theory

✤ It fails to explain the classification between metals, semiconductors and insulators.

✤ It fails to give the reason for positive value of Hall coefficient.

 \bullet It can't be able to explain the transport properties of metals.

1.7.1.Particle in a Three dimension box:

The solution of one dimension potential well is extended for a three dimensional potential box.

In a three dimensional potential box the particle can move in any direction .so we use three quantum numbers n_{x,n_y} and n_z to the three coordinate axes namely x,y and z respectively. If a,b,c are the lengths of the box along x,y and z axes then,

$$E_{n_x,n_y,n_z} = \frac{n_x^2}{8m} \frac{h^2}{a^2}$$

If a = b = c as for a cubical box then

The corresponding normalized wave function is

$$\Psi_{n_x,n_y,n_z} = \sqrt{\binom{2}{a}}\sqrt{\binom{2}{a}}\sqrt{\binom{2}{a}}\sin\frac{n_x,\pi x}{a}\sin\frac{n_y\pi y}{a}\sin\frac{n_z\pi z}{a}$$

$$= \sqrt{\left(\frac{8}{a^3}\right)\sin\frac{n_x,\pi x}{a}\sin\frac{n_y\pi y}{a}\sin\frac{n_z\pi z}{a}-\dots}$$
(2)

From the equations (1), (2) we understand that several combinations of the three quantum numbers (n_{x,n_y}, n_z) lead to different energy eigen values and eigen function.

1.7.2.Degenerate states:

For several combinations of quantum numbers, we have the same energy eigen value but different eigen function. Such a state of energy levels is called degenerate state.

The three combinations of quantum numbers (1,1,2),(1,2,1) and (2,1,1) which give the same Eigen value but different Eigen functions are called 3- fold degenerate state. **Example:**

If
$$(n_x, n_y, n_z)$$
 is $(1,1,2), (1,2,1)$ and $(2,1,1)$

Then

$$E_{112} = \frac{h^2}{8ma^2} \left(1^2 + 1^2 + 2^2 \right) = \frac{6h^2}{8ma^2}$$

PH 8252- PHYSICS FOR INFORMATION SCIENCE

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

$$E_{121} = \frac{6h^2}{8ma^2}$$
$$E_{211} = \frac{6h^2}{8ma^2}$$

The corresponding wave functions are

$$\psi_{112} = \sqrt{\left(\frac{8}{a^3}\right)} \sin \frac{\pi x}{a} \sin \frac{\pi y}{a} \sin \frac{2\pi z}{a} \cdots}$$
$$\psi_{121} = \sqrt{\left(\frac{8}{a^3}\right)} \sin \frac{2\pi x}{a} \sin \frac{2\pi y}{a} \sin \frac{\pi z}{a} \cdots}$$

PH 8252- PHYSICS FOR INFORMATION SCIENCE