
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

MAPPING DESIGN TO CODE

Implementation in an object-oriented language requires writing source code for

 class and interface definitions

 method definitions

Implementation is discussed in Java

1. Creating Class Definitions from Design Class Diagrams(DCD)

2. Creating Methods from Interaction Diagrams

3. Collection Classes in Code

4. Exceptions and Error Handling

5. Order of Implementation

6. Test-Driven or Test-First Development

Creating Class Definitions from DCDs

DCDs depict the class or interface name, superclasses, operation signatures, and

attributes of a class. If the DCD was drawn in a UML tool, it can generate the basic class

definition from the diagrams.

Defining a Class with Method Signatures and
Attributes

From the DCD, a mapping to the attribute definitions (Java fields) and method

signatures for the Java definition of SalesLineItem is straightforward.

SalesLineItem in Java.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

The addition in the source code of the Java constructor SalesLineItem(…). It is derived

from the create(desc, qty) message sent to a SalesLineItem in the enterItem interaction

diagram. This indicates, in Java, that a constructor supporting these parameters is

required.

Creating Methods from Interaction
Diagrams

The sequence of the messages in an interaction diagram translates to a series of

statements in the method definitions. The enterItem interaction diagram illustrates

the Java definition of the enterItem method. For this example, we will explore the

implementation of the Register and its enterItem method.

A Java definition of the Register class.is given below :

The enterItem interaction

diagram.

The enterItem message is sent to a Register instance; therefore, the enterItem

method is defined in class Register.

public void enterItem(ItemID itemID, int

qty)

Message 1: A getProductDescription message is sent to the ProductCatalog to retrieve a

ProductDescription.

ProductDescription desc = catalog.getProductDescription(itemID);

Message 2: The makeLineItem message is sent to the Sale.

currentSale.makeLineItem(desc, qty);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

The Register class

The enterItem method.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

Collection Classes in Code

The enterItem method.

One-to-many relationships are common. For example, a Sale must maintain visibility to a

group of many SalesLineItem instances. In OO programming languages, these

relationships are usually implemented with the introduction of a collection object, such as

a List or Map, or even a simple array.

Adding a

collection.

For example, the Java libraries contain collection classes such as ArrayList and

HashMap, which implement the List and Map interfaces, respectively. Using ArrayList,

the Sale class can define an attribute that maintains an ordered list of SalesLineItem

instances.

Exceptions and Error Handling

In terms of the UML, exceptions can be indicated in the property strings of messages and

operation declarations .

Order of Implementation

Classes need to be implemented from least-coupled to most-coupled, For

example, possible first classes to implement are either Payment or ProductDescription;

next are classes only dependent on the prior implementationsProductCatalog or

SalesLineItem

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

Possible order of class implementation and testing.

Test-Driven or Test-First
Development

An excellent practice promoted by the iterative and agile XP method and applicable to

the UP (as most XP practices are), is test-driven development (TDD).In OO unit testing

TDD- style, test code is written before the class to be tested, and the developer writes

unit testing code for nearly all production code.

The basic

rhythm is

o to write a little test code,

o write a little production code

o make it pass the test

o write some more test code, and so forth.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

Example

Suppose if we create TDD for the Sale class. Before programming the Sale class, we

write a unit testing method in a SaleTest class that does the following:

Each testing method follows this pattern:

1. Create the fixture.

2. Do something to it (some operation that you want to test).

3. Evaluate that the results are as expected.

Example:

public class SaleTest extends TestCase

{

// …

// test the Sale.makeLineItem method

public void testMakeLineItem()

{
// STEP 1: CREATE THE FIXTURE

// -this is the object to test ,it is an idiom to name it

'fixture'

Sale fixture = new Sale();

// set up supporting objects for the test

Money total = new Money(7.5

); Money price = new Money(

2.5); ItemID id = new

ItemID(1);

ProductDescription desc =

new ProductDescription(id, price, "product 1");

// STEP 2: EXECUTE THE METHOD TO TEST

// NOTE: We write this code **imagining** there

// is a makeLineItem method. This act of imagination
// test makeLineItem

sale.makeLineItem(desc, 1);

sale.makeLineItem(desc, 2);

// STEP 3: EVALUATE THE RESULTS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

// there could be many assertTrue statements

// for a complex evaluation

// verify the total is 7.5

assertTrue(sale.getTotal().equals(total));
}
}

NextGen POS Program Solution

Class Store

public class Store

{

private ProductCatalog catalog = new ProductCatalog();

private Register register = new Register(catalog);

public Register getRegister() { return register; }

}

Class ProductDescription

public class ProductDescription

{

private ItemID id;
private Money price;

private String description;

public ProductDescription (ItemID id, Money price,

String description)

{ this.id = id; this.price =

price; this.description =

description;

}

public ItemID getItemID() { return id; }

public Money getPrice() { return price; }

public String getDescription() { return description; }

}

Class ProductCatalog

public class ProductCatalog

{

public ProductCatalog()

{

// sample data
ItemID id1 = new ItemID(100);

ItemID id2 = new ItemID(200

); Money price = new Money(

3);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

ProductDescription desc;

desc = new ProductDescription(id1, price, "product 1");

descriptions.put(id1, desc);

desc = new ProductDescription(id2, price, "product 2");

descriptions.put(id2, desc);

}

public ProductDescription getProductDescription(ItemID id)

{

return descriptions.get(id);

}

}

Class SalesLineItem

public class SalesLineItem

{

private int quantity;

private ProductDescription description;

public SalesLineItem (ProductDescription desc, int quantity)

{

this.description = desc;

this.quantity = quantity;

}

public Money getSubtotal()

{ return description.getPrice().times(quantity); }

}

Class Payment

// all classes are probably in a package named

// something like:

package com.foo.nextgen.domain;

public class Payment

{

private Money amount;

public Payment(Money cashTendered){ amount = cashTendered; }

public Money getAmount() { return amount; }

}

Class Register

public class Register

{

private ProductCatalog catalog;

private Sale currentSale;

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

public Register(ProductCatalog catalog)

{ this.catalog = catalog; }

public void endSale()

{ currentSale.becomeComplete(); }

public void enterItem(ItemID id, int quantity)

{

ProductDescription desc = catalog.getProductDescription(id);

currentSale.makeLineItem(desc, quantity);

}

public void makeNewSale()

{ currentSale = new Sale(); }

public void makePayment(Money cashTendered)

{ currentSale.makePayment(cashTendered); }

Class Sale

public class Sale

{

private List<SalesLineItem> lineItems = new

ArrayList()<SalesLineItem>;

private Date date = new Date();

private boolean isComplete =

false; private Payment payment;

public Money getBalance()
{ return payment.getAmount().minus(getTotal()); }

public void becomeComplete() { isComplete = true; }

public boolean isComplete() { return isComplete; }

public void makeLineItem (ProductDescription desc,

int

quantity)

{ lineItems.add(new SalesLineItem(desc, quantity)); }

public Money getTotal()

{ Money total = new

Money(); Money subtotal

= null;

for (SalesLineItem lineItem : lineItems)

{

subtotal = lineItem.getSubtotal();

total.add(subtotal);

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS 8592 OBJECT ORIENTED ANALYSIS AND DESIGN

}
return total;

}

public void makePayment(Money cashTendered)

{ payment = new Payment(cashTendered);

}

}

