
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

The ODMG· Object Model

 The ODMG object model is the data model upon which the object definition

language (ODL) and object query language (OQL) are based. It is meant to provide a standard

data model for object databases, just as SQL describes a standard data model for relational

databases. It also provides a standard terminology in a field where the same terms were

sometimes used to describe different concepts.

Objects and Literals

 Objects and literals are the basic building blocks of the object model. The main

difference between the two is that an object has both an object identifier and a state (or current

value), whereas a literal has a value (state) but no object identifier. In either case, the value can

have a complex structure. The object state can change over time by modifying the object value.

A literal is basically a constant value, possibly having a complex structure, but it does not change.

An object has five aspects:

 identifier,

 name,

 lifetime,

 structure,

 creation.

1. The object identifier is a unique system-wide identifier (or Object_id). Every object must have

an object identifier.

2. Some objects may optionally be given a unique name within a particular ODMS—this name

can be used to locate the object, and the system should return the object given that name.

Obviously, not all individual objects will have unique names. Typically, a few objects, mainly

those that hold collections of objects of a particular object type—such as extents—will have a

name.

 These names are used as entry points to the database; that is, by locating these

objects by their unique name, the user can then locate other objects that are referenced from

these objects. Other important objects in the application may also have unique names, and it is

possible to give more than one name to an object. All names within a particular ODMS must be

unique.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

3. The lifetime of an object specifies whether it is a persistent object (that is, a database object)

or transient object (that is, an object in an executing pro-gram that disappears after the program

terminates). Lifetimes are independent of types—that is, some objects of a particular type may

be transient whereas others may be persistent.

4. The structure of an object specifies how the object is constructed by using the type

constructors. The structure specifies whether an object is atomic or not. An atomic object refers

to a single object that follows a user-defined type, such as Employee or Department. If an object

is not atomic, then it will be composed of other objects. For example, a collection object is not

an atomic object, since its state will be a collection of other objects. In the ODMG model, an

atomic object is any individual user-defined object. All values of the basic built-in data types are

considered to be literals.

5. Object creation refers to the manner in which an object can be created. This is typically

accomplished via an operation new for a special Object_Factory interface. In the object model,

a literal is a value that does not have an object identifier. However, the value may have a simple

or complex structure.

There are three types of literals:

 atomic, structured, and collection.

1. Atomic literals

 Correspond to the values of basic data types and are predefined. The basic data

types of the object model include long, short, and unsigned integer numbers (these are specified

by the keywords long, short, unsigned long, and unsigned short in ODL), regular and double

precision floating point numbers (float, double), Boolean values (boolean), single characters

(char), character strings (string), and enumeration types (enum), among others.

2. Structured literals

 Correspond roughly to values that are constructed using the tuple constructor.

The built-in structured lit-erals include Date, Interval,Time, and Timestamp.

3. Collection literals

 specify a literal value that is a collection of objects or values but the collection

itself does not have an Object_id. The collections in the object model can be defined by the type

generators set<T>, bag<T>, list<T>, and array<T>, where T is the type of objects or values in the

collection.28 Another collection type is dictionary<K, V>, which is a collection of associations <K,

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

V>, where each K is a key (a unique search value) associated with a value V; this can be used to

create an index on a collection of values V.

 The notation of ODMG uses three concepts: interface, literal, and class.

Following the ODMG terminology, we use the word behavior to refer to operations and state to

refer to properties (attributes and relationships).

 An interface specifies only behavior of an object type and is typically non

instantiable (that is, no objects are created corresponding to an interface). Although an interface

may have state properties (attributes and relationships) as part of its specifications, these cannot

be inherited from the interface. Hence, an interface serves to define operations that can be

inherited by other interfaces, as well as by classes that define the user-defined objects for a

particular application.

 A class specifies both state (attributes) and behavior (operations) of an object

type, and is instantiable. Hence, database and application objects are typically created based on

the user-specified class declarations that form a database schema.

 Finally, a literal declaration specifies state but no behavior. Thus, a literal

instance holds a simple or complex structured value but has neither an object identifier nor

encapsulated operations.

