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3.5 RANDOM TELEGRAPH SIGNAL 

Define semi random telegraph signal process and random telegraph signal 

process and Prove also that the former is evolutionary and later is WSS. 

Sol : 

If {N(t) } is a poisson process and X(t) = (-1)N(t), then {X(t)} is called a semi 

random telegraph signal process. 

∴ 𝑋(𝑡) =  {
−1; 𝑁(𝑡)𝑖𝑠 𝑜𝑑𝑑
+1 𝑁(𝑡) 𝑖𝑠 𝑒𝑣𝑒𝑛

  

Since N(t) is a poisson process, its probability law is  

P [ N(t) = n ] = 
𝑒−𝜆𝑡(𝜆𝑡)𝑛

𝑛!
, 𝑛 = 0,1,2,3, … … . . , ∞ 

𝑃[𝑋(𝑡) =  −1] = 𝑃[𝑁(𝑡) 𝑖𝑠 𝑜𝑑𝑑] 

= P [ N (t) = 1] + P[ N(T) = 3 ] + P [N(t) = 5 ] +……. 

 = 
𝑒−𝜆𝑡(𝜆𝑡)1

1!
 + 

𝑒−𝜆𝑡(𝜆𝑡)3

3!
+

𝑒−𝜆𝑡(𝜆𝑡)5

5!
 + ……… 

= 𝑒−𝜆𝑡 [
𝜆𝑡

1!
+

(𝜆𝑡)3

3!
+

(𝜆𝑡)5

5!
+ ⋯ … . . ]  ( since 𝑒𝑥 = 1 +

𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯ , Sinhx =

𝑥

1!
+

𝑥3

3!
+ ⋯, 

                           𝐶𝑜𝑠ℎ𝑥 = 1 +
𝑥2

2!
+

𝑥4

4!
+ ⋯     ) 

P[X(t) = -1] = 𝑒−𝜆𝑡 sinh 𝜆𝑡 

𝑃[𝑋(𝑡) =  1] = 𝑃[𝑁(𝑡) 𝑖𝑠 𝑒𝑣𝑒𝑛] 

= P [ N (t) = 0] + P[ N(T) = 2 ] + P [N(t) = 4 ] +……. 

 = 𝑒−𝜆𝑡 + 
𝑒−𝜆𝑡(𝜆𝑡)2

2!
+

𝑒−𝜆𝑡(𝜆𝑡)4

4!
 + ……… 
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= 𝑒−𝜆𝑡 [1 +
(𝜆𝑡)2

2!
+

(𝜆𝑡)4

4!
+ ⋯ … . . ]  ( since 𝑒𝑥 = 1 +

𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯ , Sinhx =

𝑥

1!
+

𝑥3

3!
+ ⋯, 

                           𝐶𝑜𝑠ℎ𝑥 = 1 +
𝑥2

2!
+

𝑥4

4!
+ ⋯     ) 

P[X(t) = 1] = 𝑒−𝜆𝑡 Cosh 𝜆𝑡 

The mean of the process is given by  

E[X(t)] = ∑ 𝑛𝑃𝑛 (𝑡) 

= (-1)𝑒−𝜆𝑡𝑠𝑖𝑛ℎ𝜆𝑡 + 𝑒−𝜆𝑡𝑐𝑜𝑠ℎ𝜆𝑡  

= 𝑒−𝜆𝑡[𝑐𝑜𝑠ℎ𝜆𝑡 − 𝑠𝑖𝑛ℎ𝜆𝑡] 

=  𝑒−𝜆𝑡 [(
𝑒𝜆𝑡+𝑒−𝜆𝑡

2
) − (

𝑒𝜆𝑡−𝑒−𝜆𝑡

2
)] 

= =  𝑒−𝜆𝑡[
𝑒𝜆𝑡

2
+

𝑒−𝜆𝑡

2
−

𝑒𝜆𝑡

2
+

𝑒−𝜆𝑡

2
] 

= 𝑒−𝜆𝑡𝑒−𝜆𝑡 

E[X(t)] = 𝑒−2𝜆𝑡 which is not a constant. 

∴ {𝑋(𝑡)} is not stationary. 

Hence semi random telegraph signal is an evolutionary process. 

The autocorrelation function is given by  

𝑅𝑋𝑋(𝜏) = 𝐸[𝑋(𝑡)𝑋(𝑡 +  𝜏)] 

𝑋(𝑡)𝑋(𝑡 +  𝜏) = {
−1; 𝑁(𝜏)𝑖𝑠 𝑜𝑑𝑑
+1 𝑁(𝜏) 𝑖𝑠 𝑒𝑣𝑒𝑛

 

P[ 𝑋(𝑡)𝑋(𝑡 +  𝜏) =  −1] = 𝑃[𝑁(𝜏)𝑖𝑠 𝑜𝑑𝑑] 
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                                P[ 𝑋(𝑡)𝑋(𝑡 +  𝜏) =  − 1] = 𝑃[𝑁(𝜏)𝑖𝑠 𝑜𝑑𝑑]   

                                                            =  𝑒−𝜆𝜏𝑠𝑖𝑛ℎ𝜆𝜏 

                                P[ 𝑋(𝑡)𝑋(𝑡 +  𝜏) =  1] = 𝑃[𝑁(𝜏)𝑖𝑠 𝑒𝑣𝑒𝑛]   

                                                            =  𝑒−𝜆𝜏𝑐𝑜𝑠ℎ𝜆𝜏 

𝑅𝑋𝑋(𝜏) = 𝐸[𝑋(𝑡)𝑋(𝑡 +  𝜏)] 

                                                           = (-1)𝑒−𝜆𝜏𝑠𝑖𝑛ℎ𝜆𝜏 + 𝑒−𝜆𝜏𝑐𝑜𝑠ℎ𝜆𝜏  

                                                           = 𝑒−𝜆𝜏[𝑐𝑜𝑠ℎ𝜆𝜏 − 𝑠𝑖𝑛ℎ𝜆𝜏] 

                                                          =  𝑒−𝜆𝜏 [(
𝑒𝜆𝜏+𝑒−𝜆𝜏

2
) − (

𝑒𝜆𝜏−𝑒−𝜆𝜏

2
)] 

                                                          =  𝑒−𝜆𝜏[
𝑒𝜆𝜏

2
+

𝑒−𝜆𝜏

2
−

𝑒𝜆𝜏

2
+

𝑒−𝜆𝜏

2
] 

                                                          = 𝑒−𝜆𝜏𝑒−𝜆𝜏  

                                                          = 𝑒−2𝜆𝜏 

RANDOM TELEGRAPH SIGNAL 

                      Let {X(t)} be semi random telegraph signal process and Y(t) = 

𝛼𝑋(𝑡) where 𝛼 is a R.V which takes value -1 and +1 with probability 
1

2
 𝑎𝑛𝑑 

1

2
 

respectively, which is independent of { X(t)}, then {Y(t)} is called a random 

telegraph signal process. 

Probability distribution for 𝜶 

 

𝛼 -1 1 

P(𝜶) 1/2 1/2 
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               E( 𝛼) =  ∑ 𝛼𝑃(𝛼) =  −
1

2
+

1

2
= 0 

               E( 𝛼2) =  ∑ 𝛼2𝑃(𝛼) =  
1

2
+

1

2
= 1   

To prove {X(t)} is a WSS process 

𝐸[𝑌(𝑡)] = 𝐸[𝛼𝑋(𝑡)] 

               = 𝐸(𝛼)𝐸[𝑋(𝑡)] Since 𝛼 is independent of X(t) 

                             = 0. 𝑒−2𝜆𝑡   Since E ( 𝛼) = 0  

                                                          = 0 

                      ∴ 𝐸[𝑌(𝑡)] is a constant 

𝑅𝑋𝑌(𝜏) = 𝐸[𝑌(𝑡)𝑌(𝑡 +  𝜏)] 

                = 𝐸[ 𝛼𝑋(𝑡)𝛼𝑋(𝑡 +  𝜏)] 

= 𝐸[𝛼2𝑋(𝑡)𝑋(𝑡 +  𝜏)] 

= 𝐸(𝛼2)𝐸[𝑋(𝑡)𝑋(𝑡 +  𝜏)] 

= 1 x 𝑅𝑋𝑋(𝜏) 

𝑅𝑌𝑌(𝜏) = 𝑒−2𝜆𝜏 which is a function of 𝜏 

∴ {𝑌(𝑡)}𝑖𝑠 𝑊𝑆𝑆. 

Hence the random telegraph signal process is WSS. 

 


