### UNIT -III DESIGN OF SLABS AND STAIRCASE

### 3.3 DESIGN OF SIMPLY SUPPORTED AND CONTINUOUS SLABS USING IS CODE

### **DESIGN EXAMPLES**

1.A slab has clear dimensions 4 m x 6 m with wall thickness 230 mm the live load on the slab is 5 kN/m<sup>2</sup> and a finishing load of 1kN/m<sup>2</sup> may be assumed. Using M20 concrete and Fe415 steel, design the slab

### Given data

| Dimension $= 4 \times 6$                 |
|------------------------------------------|
| Shorter span $1_x = 4m$                  |
| Longer span $1_y = 6m$                   |
| $\frac{l_y}{l_x} = \frac{6}{4}$          |
| = 1.5 < 2                                |
| It is a two way slab.                    |
| Width of support = 230 mm                |
| Live load = $5 \text{ kN/m}^2$           |
| Materials , $f_{ck} = 20 \text{ N/mm}^2$ |
| $F_y = 415 \text{ N/mm}^2$               |

Depth of slab:

Effective depth d =  $\frac{span}{25}$ =  $\frac{4000}{25}$ = 160 mm

Assume cover 20mm, 10mm diameter rod

Overall depth D = 
$$160 + 20 + \frac{10}{2}$$

=185mm

D = 200 mm

**Effective span:** 

1. c/c of supports  $l_e = \frac{wall \ thickness}{2} + shorter \ span + \frac{wall \ thickness}{2}$ 

$$= \frac{0.23}{2} + 4 + \frac{0.23}{2}$$
  
= 4.23 m  
2. clear span + effective depth = 4 + 0.24  
= 4.24m

Take least value,  $1_e = 4.23$  m

Load calculation:

Self weight= B X D X 
$$\gamma$$
  
= 1 X 0.2 X 25  
= 5 kN/ m  
Live load = 5 kN/m  
Floor finish = 1 kN/m  
Total load = 5 + 5 + 1  
= 11 kN/ m  
Factor load = 1.5 x 11

= 16.5 kN/m

**Bending moment & shear force:** 

 $M_{\rm X} = \alpha_{\rm X} W_{\rm U} l_{\rm e}^2$  $M_{\rm y} = \alpha_{\rm y} W_{\rm U} l_{\rm e}^2$ 

From table 26 of IS 456: 2000

$$\frac{ly}{lx} = 1.5$$

Four edges are discontinuous,

$$\alpha_{\rm X} = 0.089$$
  
 $\alpha_{\rm v} = 0.056$ 

**Bending moment**:

$$\begin{split} M_{\rm X} &= 15.59 \text{x} 4.2^2 \text{x} 0.089 \\ &= 25.01 \text{ kNm} \\ M_{\rm Y} &= 0.056 \text{ x} \text{ } 15.93 \text{ x} \text{ } 4.2^2 \end{split}$$

= 15.73 kNm

Shear force :

$$SF = \frac{Wule}{2}$$
$$= \frac{15.93 \times 4.2}{2}$$
$$= 33.45 \text{ KN}$$

## **Check for Depth :**

 $M_{\rm U}\,=0.138\,\,f_{ck}bd^2$ 

$$d = \sqrt{\frac{25 \times 10^6}{0.138 \times 20 \times 1000}}$$
  
= 95.17 mm

 $d_{prov} > d_{req}$ 

Hence the design is safe.

### Area of reinforcement:

For shorter span:

$$\begin{split} M_{U} &= 0.87 \text{ f}_{y} \times \text{A}_{st} \times \text{d} \left[1 - \frac{\text{Ast} \times \text{fy}}{\text{b} \times \text{d} \times \text{fck}}\right] \\ 25 \times 10^{6} &= 0.87 \times 415 \times \text{A}_{st} \times 160 \left[1 - \frac{\text{Ast} \times 415}{1000 \times 160 \times 20}\right] \\ 25 \times 10^{6} &= 57768 \text{ A}_{st} - 7.4 \text{ A}_{st}^{2} \\ \text{A}_{st} &= 459.85 \text{ mm}^{2} \\ \text{A}_{st} &= 459.85 \text{ mm}^{2} \\ \text{A}_{st \text{ min}} &= 0.12\% \times \text{bd} \\ &= \frac{0.12}{100} \times 1000 \times 200 \\ &= 240 \text{ mm}^{2} \\ \text{Provide 10mm dia bar.} \end{split}$$

Spacing :

*i.* 
$$\frac{\text{ast}}{\text{Ast}} \times 1000 = \frac{\pi/4 \times 10^2}{459.85} \times 1000$$
  
= 170.79 mm  $\approx 170$ mm  
ii. 3d = 3 x 160 = 480 mm  
take the least value = 170 mm

provide 10 mm dia bar 170 mm c/c.

For longer span:

$$\begin{split} M_{U} &= 0.87 \text{ f}_{y} \times A_{st} \times d \left[1 - \frac{Ast \times fy}{b \times d \times fck}\right] \\ 15.73 \times 10^{6} &= 0.87 \times 415 \times A_{st} \times 160 \left[1 - \frac{Ast \times 415}{1000 \times 160 \times 20}\right] \\ A_{st} &= 282.52 \text{ mm}^{2} \end{split}$$

**Spacing :** 

*i*) 
$$\frac{\text{ast}}{\text{Ast}} \times 1000 = \frac{\pi/4 \times 10^2}{282.52} \times 1000 = 277.99 \text{mm} \approx 300 \text{ mm}$$
  
*ii*)  $3d = 3 \times 160$ 

= 480mm

Take the least value for spacing = 300mm,

provide 10mm diameter bar, 300m

**Check for shear:** 

Permissible shear stress, 
$$\tau_v = \frac{Vu}{bd}$$

 $=\frac{33.45\times10^3}{1000\times160}=0.2N/mm^2$ 

Nominal shear stress =  $\tau_c \times K$ 

To find  $au_{
m c}$  ,

Percentage of steel, 
$$p_t = 100 \times \frac{Ast}{b \times d}$$
  
= 100  $\times \frac{459.85}{1000 \times 160}$ 

The value lies between 0.25 and 0.50, use interpolation

| X1             | 0.25 | Y <sub>1</sub> | 0.36 | Х | 0.28 |
|----------------|------|----------------|------|---|------|
| X <sub>2</sub> | 0.5  | Y2             | 0.48 | Y | ?    |

$$Y = \tau_{c} = y_{1} + \frac{(y_{2} - y_{1})}{(x_{2} - x_{1})} (x - x_{1})$$
$$= 0.36 + \frac{0.48 - 0.36}{0.50 - 0.25} (0.28 - 0.25)$$
$$= 0.37 \text{N/mm}^{2}$$

To find K,

### Overall depth, D = 185mm

### Refer pg no:73 of IS 456-2000

This value lies between 150 to 175, use interpolation

| X <sub>1</sub> | 150 | Y <sub>1</sub> | 1.3  | Х | 185 |
|----------------|-----|----------------|------|---|-----|
| X <sub>2</sub> | 175 | Y2             | 1.25 | Y | ?   |

$$Y = K = y_1 + \frac{(y_2 - y_1)}{(x_2 - x_1)} (x - x_1)$$
$$= 1.3 + \frac{1.25 - 1.3}{175 - 150} (185 - 150)$$
$$= 1.27$$

 $\tau_{\rm c} \times {\rm K} = 0.38 \times 1.27$ 

 $= 0.48 \text{N/mm}^2$ 

 $\tau_{\rm v} < \tau_{\rm c} \times {\rm K},$ 

Hence the design is safe.

**Check for deflection:** 

 $\frac{l}{d^{\text{max}}} = \frac{l}{d^{\text{basic}}} \times K_b \times K_c$  $= 20 \times 1.4 \times 1 = 30$  $\frac{l}{d^{\text{pro}}} = \frac{\text{Effective span}}{\text{Effective depth}}$  $= \frac{4000}{160} = 26.25 \text{mm}$ 

$$(\frac{l}{d})_{\text{max}} > (\frac{l}{d})_{\text{pro}}$$

Hence the design is safe for deflection.

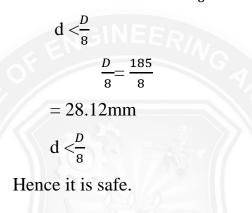
### **Check for crack control:**

1. Reinforcement provided must be greater than minimum percentage of reinforcement provided as per IS 456-2000.

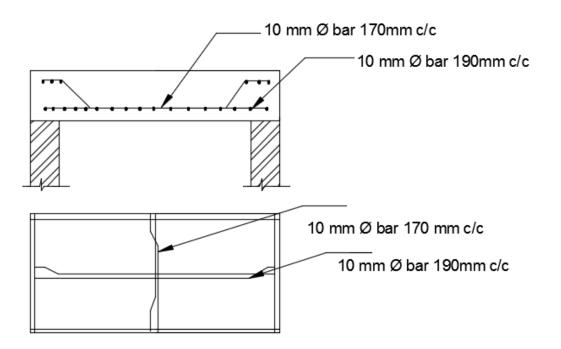
 $A_{stmin} = 0.12\% \text{ of cross section area}$  $= 0.12/100 \times 1000 \times 185$  $= 222 \text{ mm}^2$ 

A<sub>st pro</sub>>A<sub>stmin</sub>,

Hence it is safe.


2. Spacing is not greater than 3d.

 $3d = 3 \times 160$ = 480 mm


Spacing < 3d,

Hence it is safe.

3. Diameter of reinforcement should be less than  $\frac{D}{a}$ 



### **Reinforcement detailing:**



2.A slab has clear dimensions 3.5 m x 6 m with wall thickness 230 mm the live load on the slab is  $5 \text{ kN/m}^2$  and a finishing load of  $1 \text{kN/m}^2$  may be assumed. Using M20 concrete and Fe415 steel, design the slab

Given data

| Dimension                   | $= 3.5 \times 6$                |
|-----------------------------|---------------------------------|
| Shorter span 1 <sub>x</sub> | = 3.5                           |
| Longer span 1 <sub>y</sub>  | = 6                             |
|                             | $\frac{ly}{lx} = \frac{6}{3.5}$ |
|                             | = 1.7 < 2                       |
| It is a two way slab        |                                 |
| Width of support            | = 230 mm                        |
| Live load                   | $= 5 \text{ kN/m}^2$            |
| Materials ,f <sub>ck</sub>  | $= 20 \text{ N/mm}^2$           |
| Fy                          | $= 415 \text{ N/mm}^2$          |
|                             |                                 |
| Depth of slab,              |                                 |
| Effective depth, d          | $=\frac{span}{25}$              |
|                             | $=\frac{3500}{25}$              |
| Assume cover 20mm, 10mm d   | iameter rod                     |
| Overall depth, D            | = 140 + 20 + 10/2               |
|                             | =165mm                          |
|                             | = 125 mm                        |
|                             |                                 |

# Effective span:

i. c/c of supports 
$$l_e = \frac{wall thickness}{2} + shorter span + \frac{wall thickness}{2}$$
$$= \frac{0.23}{2} + 3.5 + \frac{0.23}{2}$$

= 3.73 m

ii. clear span + effective depth = 3.5 + 0.14

|                                  | = 3.64  |
|----------------------------------|---------|
| Take least value, 1 <sub>e</sub> | = 2.6 m |

## Load calculation:

Self weight

| 0            | 1                |
|--------------|------------------|
|              | = 1 X 0.165 X 25 |
|              | = 4. 13 KN/ m    |
| Live load    | = 5 KN/m         |
| Floor finish | = 1  KN/m        |
| Total load   | =4.13+5+1        |
|              | = 10.13 KN/ m    |
| Factor load  | = 1.5 x 10.13    |
|              |                  |

= 15.2 KN/ m

**Bending moment & shear force:** 

 $M_{\rm X} = \alpha_{\rm X} W_{\rm U} l_{\rm e}^2$  $M_{\rm y} = \alpha_{\rm y} W_{\rm U} l_{\rm e}^2$ 

= B X D X  $\gamma$ 

From table 26 of IS 456: 2000

$$\frac{ly}{lx} = 1.7$$

Four edges are discontinuous,

$$\alpha_{\rm X} = 0.098$$
  
 $\alpha_{\rm y} = 0.056$ 

**Bending moment**:

Shear force :

$$SF = W_U l_e/2$$
  
= (15.2 x 3.64 )/2  
= 27.66 KN

**Check for Depth :** 

 $M_{\rm U} = 0.138 \ f_{\rm ck} bd^2$  $d = \sqrt{\frac{19.74 \times 10^6}{0.138 \times 20 \times 1000}}$  $= 84.57 \ \rm mm$ 

 $d_{prov} > d_{req}$ 

Hence the design is safe

# Area of reinforcement: For shorter span:

$$\begin{split} M_U &= 0.87 \ f_y \times A_{st} \times d \ [1 - \frac{Ast \times fy}{b \times d \times fck}] \\ 19.74 \times 10^6 &= 0.87 \times 415 \times A_{st} \times 140 \ [1 - \frac{Ast \times 415}{1000 \times 140 \times 20} \ ] \\ 19.74 \times 10^6 &= 50547 \ A_{st} - 7.49 \ A_{st}^2 \\ A_{st} &= 416.19 \ mm^2 \\ A_{st \ min} &= 0.12\% \times bd \\ &= \frac{0.12}{100} \times 1000 \times 165 \end{split}$$

 $= 198 \text{ mm}^2$ 

Provide 10mm dia bar

**Spacing :** 

$$i \frac{\text{ast}}{\text{Ast}} \times 1000 = \frac{\pi/4 \times 10^2}{416.9} \times 1000$$
$$= 188.7 \text{ mm}$$
$$\approx 180 \text{mm}$$
$$= 3 \text{ x } 140$$
$$= 420 \text{ mm}$$

Take the least value for spacing

provide 10 mm dia bar 180 mm c/c

For longer span:

$$\begin{split} M_U &= 0.87 \ f_y \times A_{st} \times d \ [1 - \frac{Ast \times fy}{b \times d \times fck}] \\ &11.24 \times 10^6 = 0.87 \times 415 \times A_{st} \times 140 \ [1 - \frac{Ast \times 415}{1000 \times 100 \times 20} \ ] \end{split}$$

$$A_{st} = 230.2 \text{mm}^2$$

Spacing :

i.  $\frac{\text{ast}}{\text{Ast}} \times 1000 = \frac{\pi/4 \times 10^2}{230.2} \times 1000$ = 323.72 mm $\approx 300 \text{mm}$ ii. 3d $= 5 \times 140$ = 800 mmiii. 300 mm

Take the least value for spacing

provide 10mm diameter bar, 300mm c/c

### **Check for shear:**

Permissible shear stress,  $\tau_v = \frac{v_u}{b \times d}$ 

 $= \frac{27.66 \times 10^3}{1000 \times 140}$  $= 0.19 \text{N/mm}^2$  $= \tau_c \times \text{K}$ 

Nominal shear stress

To find  $au_{
m c}$  ,

Percentage of steel, 
$$p_t = 100 \times \frac{Ast}{b \times d}$$
  
=  $100 \times \frac{416.69}{1000 \times 140}$   
=  $0.29\%$ 

The value lies between 0.25 and 0.50, use interpolation

| X <sub>1</sub>                                                        | 0.25 | Y <sub>1</sub> | 0.36 | Х | 0.29 |  |  |  |
|-----------------------------------------------------------------------|------|----------------|------|---|------|--|--|--|
| X <sub>2</sub>                                                        | 0.5  | Y2             | 0.48 | Y | ?    |  |  |  |
| $Y = \tau_c = y_1 + \frac{(y_2 - y_1)}{(x_2 - x_1)} (x - x_1)$        |      |                |      |   |      |  |  |  |
| $= 0.36 + \frac{0.48 - 0.36}{0.50 - 0.25} \left( 0.29 - 0.25 \right)$ |      |                |      |   |      |  |  |  |
| $= 0.38 \text{N/mm}^2$                                                |      |                |      |   |      |  |  |  |

To find K,

Overall depth, D = 165mm

| X <sub>1</sub> | 150 | Y <sub>1</sub> | 1.3  | Х | 165 |
|----------------|-----|----------------|------|---|-----|
| X <sub>2</sub> | 175 | Y2             | 1.25 | Y | ?   |

This value lies between 150 to 175, use interpolation

$$Y = K = y_1 + \frac{(y_2 - y_1)}{(x_2 - x_1)} (x - x_1)$$
  
= 1.3 +  $\frac{1.25 - 1.3}{175 - 150} (165 - 150)$   
= 1.27  
= 0.38× 1.27  
= 0.48N/mm<sup>2</sup>

Hence the design is safe.

 $\tau_{\rm c} \times {\rm K}$ 

**Check for deflection:** 

$$(l/_{d})_{max} = (l/_{d})_{basic} \times K_{b} \times K_{c}$$

$$= 20 \times 1.5 \times 1$$

$$= 30$$

$$(l/_{d})_{pro} = \frac{Effective span}{Effective depth}$$

$$= \frac{3.64}{0.14}$$

$$= 26mm$$

$$(l/_{d})_{max} > (l/_{d})_{pro}$$

Hence the design is safe for deflection.

## Check for crack control:

4. Reinforcement provided must be greater than minimum percentage of reinforcement provided as per IS 456-2000.

 $A_{stmin} = 0.12\%$  of cross section area

 $= 0.12/100 \times 1000 \times 165$ 

 $= 198 \text{ mm}^2$ 

 $A_{st pro} > A_{stmin}$ ,

Hence it is safe.

5. Spacing is not greater than 3d.

 $3d = 3 \times 140$ 

Hence it is safe.

6. Diameter of reinforcement should be less than  $D_{8}$ 

$$d < D/8$$
  
 $D/8 = \frac{165}{8}$   
 $= 20.62 mm$   
 $d < D/8$ 

Hence it is safe.

## **Torsion reinforcement in corners:**

Area of reinforcement in each corners is,

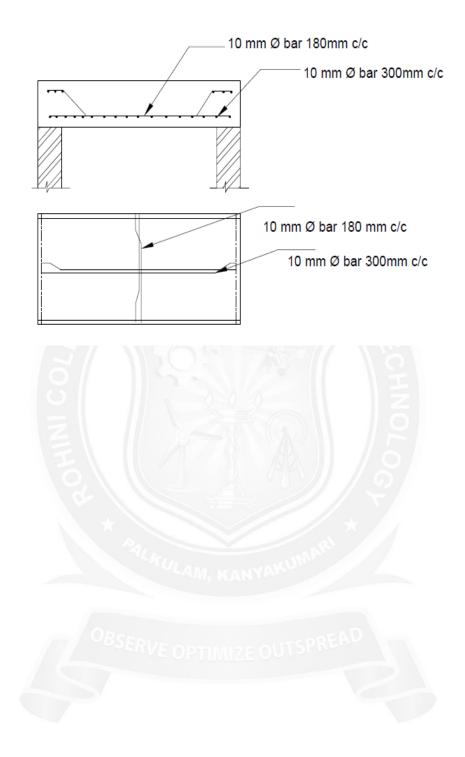
 $A_{st torsion} = 0.75 \times 416.19$ 

= 312.14 mm

### Spacing,

Provide 8 mm Ø bar

 $\frac{\text{ast}}{\text{Ast}} \times 1000$ 


$$=\frac{\pi/_4 \times 8^2}{312.14} \times 1000$$
$$= 161 \text{mm}$$
$$\approx 160 \text{mm}$$

Length over which the torsion steel is provided,

$$= \frac{1}{5} \times \text{shorter span}$$
$$= \frac{1}{5} \times 3500$$
$$= 700 \text{ mm}$$

Provide 8 mm  $\emptyset$  bar 160mm c/c , for the length of 700 mm at the corners

## **Reinforcement details**



### **CONTINUOUS SLAB DESIGN**

Design a one-way slab for an office floor which is continuous over T beams at 3.5m intervals. Assume a live load  $4kN/m^2$  adopt  $M_{20}$  grade concrete and Fe<sub>415</sub> steel HYSD bars.

Given:

| L               | =   | 3.5 m                 |
|-----------------|-----|-----------------------|
| q               | =   | $4 \text{ kN/m}^2$    |
| f <sub>ck</sub> | =-1 | 20 N/mm <sup>2</sup>  |
| $f_y$           | =   | 415 N/mm <sup>2</sup> |

## Step: 1 Depth of slab

| Assuming a span/depth    | ratio o       | f 26 (Clause 23.2.1 of IS 456)               |
|--------------------------|---------------|----------------------------------------------|
| Effective depth d        | =             | (span/26)                                    |
|                          | =             | 3500/26 = 135  mm                            |
| Adopt d                  | = /           | 140 mm                                       |
| D                        | =             | 160 mm                                       |
| Step: 2 Load calculation |               |                                              |
| Self-weight of slab      | 2 <u>4</u> ×∪ | $0.165 \text{ x } 25 = 4.125 \text{ kN/m}^2$ |
| Finishes                 | =             | 0.875 kN/m <sup>2</sup>                      |
| Total working load (g)   | EI≓∕E         | 5.000 kN/m <sup>2</sup>                      |
| Service live load (q)    | =             | $4 \text{ kN/m}^2$                           |

### Step: 3 Bending moment calculation

Referring to Tables 12 and 13, IS 456-2000 code, maximum negative BM at support next to the end support is:

$$M_{u} (-ve) = 1.5 \left[ \frac{gL^{2}}{10} + \frac{qL^{2}}{9} \right]$$
$$= 1.5 \left[ \frac{5 \times 3.5^{2}}{10} + \frac{4 \times 3.5^{2}}{9} \right]$$
$$= 17.35 \text{ kNm}$$

Positive BM at centre of span

$$M_{u} (+ve) = 1.5 \left[ \frac{gL^{2}}{12} + \frac{qL^{2}}{10} \right]$$
$$= 1.5 \left[ \frac{5 \times 3.5^{2}}{12} + \frac{4 \times 3.5^{2}}{10} \right]$$
$$= 15 \text{ kNm}$$

Step: 4 Shear force calculation

Maximum shear force at the support

$$V_u = 1.5 \times 0.6 (g + q) L$$
  
= (1.5 x 0.6) (5 + 4) 3.5  
= 28.35 kN

Step: 5 Check for Depth of the slab

$$\begin{split} M_{u \ lim} &= 0.138 \ f_{ck} \ bd^2 \\ &= (0.138 \ x \ 20 \ x \ 10^3 \ x \ 140^2) \ 10^{-6} \\ &= 54.1 \ \ kNm \\ Since \ M_u \ < M_{u \ lim} \,, \end{split}$$

Section is under – reinforced.

Step: 6 Reinforcement details

$$M_{u} = 0.87 f_{y} \operatorname{Ast} d \left(1 - \frac{f_{y} \operatorname{Ast}}{f_{ck} \operatorname{bd}}\right)$$

$$17.35 x 10^{6} = 0.87 x 415 x \operatorname{Ast} x 140 \left(1 - \frac{140 \operatorname{Ast}}{20 \times 1000 \times 140}\right)$$
Solving Ast = 360 mm<sup>2</sup>

Provide 10 mm diameter bars at 150 mm centers (Ast =  $524 \text{ mm}^2$ ). The same reinforcement is provided for positive BM at mid-span.

Distribution steel =  $0.0012 \times 10^3 \times 165$ =  $198 \text{ mm}^2$ 

Provide 10 mm diameter bars at 300 mm centers (Ast =  $262 \text{ mm}^2$ ).

Step: 7 Check for shear stress

$$\tau_{v} = \frac{V_{u}}{bd}$$

$$= \frac{28.35 \times 10^{3}}{10^{3} \times 140}$$

$$= 0.20 \text{ N/mm}^{2}$$

$$p_{t} = \frac{100 \times \text{Ast}}{\text{bd}}$$

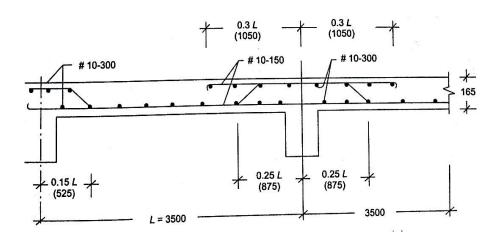
$$= \frac{100 \times 262}{10^{3} \times 140}$$

$$= 0.187$$

Refer to Table 19, IS 456 and readout:

$$k\tau_c = 1.27 \times 0.30 = 0.38 \text{ N/mm}^2$$

Since  $\tau_c \ > \ \tau_v$  , the sab is safe against shear stresses.


Step: 8 Check for Deflection

Considering the end and inferior spans

| $\left(\frac{\mathbf{L}}{\mathbf{d}}\right)_{\mathrm{max}}$ | X              | - 5     | $\left(\frac{\mathrm{L}}{d}\right)_{\mathrm{Ba}}$ | <sub>asic</sub> x k <sub>t</sub> | x k <sub>c</sub> x | k <sub>f</sub> |
|-------------------------------------------------------------|----------------|---------|---------------------------------------------------|----------------------------------|--------------------|----------------|
| Also                                                        | k <sub>c</sub> | =       | $\mathbf{k}_{\mathrm{f}}$                         | =                                | 1.00               |                |
|                                                             | p <sub>t</sub> | =       | $\frac{100 \text{ x}}{10^3 \text{ x}}$            | - / A                            |                    |                |
|                                                             |                | 2       | 0.28                                              |                                  |                    |                |
| From                                                        | Fig.8.         | 1, read | out                                               | k <sub>t</sub>                   | =                  | 1.5            |
| $\left(\frac{L}{d}\right)_{ma}$                             | x              |         | $(\frac{20+2}{2})$                                | <del>26</del> )1.5               | Enur               | 34.5           |

$$(\frac{L}{d})_{Actual} = \frac{3500}{140} = 25 < 34.5$$

Hence the slab is safe against deflection control.

