2.4 IS code method:

General shear failure:

$$q_f = CN_cS_cd_ci_c + \gamma DN_qS_qd_qi_q + 0.5B\gamma N_\gamma S_\gamma d_\gamma i_\gamma$$

Local shear failure

$$q_f = \frac{2}{3} C N_c' S_c d_c i_c + \gamma D N_q' S_q d_q i_q + 0.5 B \gamma N_\gamma' S_\gamma d_\gamma i_\gamma W$$

 $S_c, S_q, S_\gamma =$ Shape factor

 d_c, d_q, d_γ = Depth factor

 i_c, i_q, i_γ = inclination factor

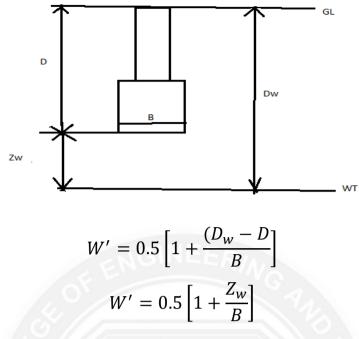
W'=water table factor

Shape	Sc	Sq	Sγ
Strip	1.05	1	1
Rectangle	$1 + 0.2\frac{B}{L}$	$1 + 0.2 \frac{B}{L}$	$1-0.4\frac{B}{L}$
Square	1.3	1.2	0.8
Circle	1.3	1.2	0.6

For $\varphi = 0$, $i_c = i_q = i_{\gamma} = 1$

$$i_{c} = i_{q} = \left(1 - \frac{\alpha}{90}\right)^{2}$$

$$N\varphi = i_{\gamma} = \left(1 - \frac{\alpha}{\varphi}\right)^{2}$$


$$N\varphi = \tan^{2}\left(45 + \frac{\varphi}{2}\right)$$

$$\varphi > 10^{0}, d_{q} = d_{\gamma} = 1 + 0.1\left(\frac{D_{f}}{B}\right)\sqrt{N\varphi}$$

$$\varphi < 10^{0}, d_{q} = d_{\gamma} = 1$$

$$d_{c} = 1 + 0.2\frac{D}{B}\sqrt{N\varphi}$$

Effect of water table(W'):

When Z_w=0,W'=0.5

 $Z_w = B, W' = 1$

Table1: Bearing Capacity Factor (Refer IS6403-1981 Page number8)

(Degrees)	No		
		Ng	Nү
0	5.14	1.00	0-00
5	6.49	1.22	0-45
10	8-35	2:47	1.22
15	10.98	3 94	2.65
20	14:83	6 40	5-39
25	20 72	10.66	10 88
30	30-14	18-40	22-40
35	46 12	33-30	48 03
40	75-31	64-20	109 41
45	138-88	134-88	271-76
50	266-89	\$19.07	762-89

Problems:

1.A rectangular footing has a size of 1.8mx3m has to transmit the load of a column at a depth of 1.5m. Calculate the safe load which the footing can carry at a factor of safety 3 against shear failures. Use Is code method. The soil has the following Properties.n=40%,G=2.67,w=15%,c=8KN/m², Φ =32.5⁰

Solution:

$$e = \frac{n}{1 - n}$$
$$= \frac{0.4}{1 - 0.4} = 0.667$$

$$\gamma_d = \frac{G\gamma_w}{1+e}$$
$$= \frac{2.67x9.81}{1+0.667} = 15.71KN/m^3$$
$$\gamma = \gamma_d (1+w)$$
$$= 15.71(1+0.15)$$
$$= 18.07KN/m^3.$$

For $\Phi=32.5^{\circ}$ for Is Method

Nc=38.3,Nq=25.85and Ny=35.21

$$q_f = CN_cS_cd_ci_c + \gamma DN_qS_qd_qi_q + 0.5B\gamma N_\gamma S_\gamma d_\gamma i_\gamma$$

For Rectangular:

Shape Factor

$$s_{c} = 1 + 0.2 \frac{B}{L}$$

$$= 1 + 0.2 \frac{1.8}{3} = 1.12$$

$$s_{q} = 1 + 0.2 \frac{B}{L}$$

$$= 1 + 0.2 \frac{1.8}{3} = 1.12$$

$$s_{\gamma} = 1 - 0.4 \frac{B}{L}$$

$$= 1 - 0.4x \frac{1.8}{3} = 0.76$$

Depth factor:

$$arphi > 10^{0}$$
, $d_{q} = d_{\gamma} = 1 + 0.1 (rac{D_{f}}{B}) \sqrt{N arphi}$
 $d_{c} = 1 + 0.2 rac{D}{B} \sqrt{N arphi}$

$$i_{c} = i_{q} = i_{\gamma} = 1$$

$$N\varphi = \tan^{2}\left(45 + \frac{\varphi}{2}\right) \text{ or } \sqrt{N\varphi} = \tan\left(45 + \frac{\varphi}{2}\right)$$

$$\sqrt{N\varphi} = \tan\left(45 + \frac{32.5}{2}\right) = 1.823$$

$$d_{c} = 1 + 0.2 \frac{1.5}{1.8} x 1.823 = 1.304$$

$$d_{q} = d_{\gamma} = 1 + 0.1 \left(\frac{1.5}{1.8}\right) x 1.823 = 1.152$$

$$q_{f} = 8x38.13x1.12x1.304 + 18.07x1.5x25.85x1.12x1.152$$

$$+ 0.5x18.07x1.8x35.21x0.76x1.152$$

$$= 445.50 + 904.02 + 501.34$$

$$= 1850.86KN/m^{2}$$

$$q_{nf} = q_{f} - \gamma D$$

$$= 1850.86 - 18.07x1.5$$

$$= 1823.75KN/m^{2}$$

$$q_{s} = \frac{q_{nu}}{F} + \gamma D$$

$$= \frac{1823.75}{3} + (18.07x1.5)$$

$$= 635.02KN/m^{2}$$
Safe Load=q, x area

$$= 635.02x(1.8x3)$$

$$= 3429KN$$