

UNIT-II ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

13. CLOSEST-PAIR AND CONVEX-HULL PROBLEMS.

The two-dimensional versions of the closest-pair problem and the convex-hull problem

problems can be solved by brute-force algorithms in θ(n2) and O(n3) time, respectively. The

divide-and-conquer technique provides sophisticated and asymptotically more efficient

algorithms to solve these problems.

The Closest-Pair Problem

Let P be a set of n >1 points in the Cartesian plane. The points are ordered in non-

decreasing order of their x coordinate. It will also be convenient to have the points sorted (by

merge sort) in a separate list in non-decreasing order of the y coordinate and denote such a list

byQ.If 2 ≤ n ≤ 3, the problem can be solved by the obvious brute-force algorithm. If n >3, we

can divide the points into two subsets Pl and Pr of]n/2] and⎝n/2]points, respectively, by

drawing a vertical line through the median m of their x coordinates so that]n/2] points lie the

left of or on the line itself, and]n/2]points lie to the right of or on the line. Then we can solve

the closest- pair problem recursively for subsets Pland Pr .Let dland drbe the smallest distances

between pairs of points in Pl and Pr, respectively, and let d = min{dl,dr}.

FIGURE 2.13 (a) Idea of the divide-and-conquer algorithm for the closest-pair problem.

UNIT-II ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

(a) Rectangle that may contain points closer than dmin to point p.

Note that d is not necessarily the smallest distance between all the point pairs

because points of a closer pair can lie on the opposite sides of the separating line.

Therefore, as a step combining the solutions to the smaller sub problems, we need to

examine such points. Obviously, we can limit our attention to the points inside the

symmetric vertical strip of width 2d around the separating line, since the distance between

any other pair of points is at least d (Figure2.13a).

Let S be the list of points inside the strip of width 2d around the separating line,

obtained from Q and hence ordered in non-decreasing order of their y coordinate. We will

scan this list, updating the information about dmin, the minimum distance seen so far, if

we encounter a closer pair of points. Initially, dmin = d, and subsequently dmin ≤ d. Let p(x,

y) be a point on this list.

 For a point p (x, y) to have a chance to be closer to p than dmin, the point must

follow p on list S and the difference between their y coordinates must be less than dmin.

Geometrically, this means that p must belong to the rectangle shown in Figure

2.13b. The principal insight exploited by the algorithm is the observation that the rectangle

can contain just a few such points, because the points in each half (left and right) of the

rectangle must be at least distance d apart.

 It is easy to prove that the total number of such points in the rectangle, including

p, does not exceed 8. A more careful analysis reduces this number to 6. Thus, the algorithm

can consider no more than five next points following p on the list S, before moving up to

the next point.

Here is pseudocode of the algorithm. We follow the advice given in to avoid

computing square roots inside the innermost loop of the algorithm.

UNIT-II ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

.

 return sqrt(dminsq)

The algorithm spends linear time both for dividing the problem into two problems half

the size and combining the obtained solutions. Therefore, assuming as usual that n is a power

of 2, we have the following recurrence for the running time of the algorithm:

T (n) = 2T (n/2) + f (n),

where f (n) ∈ Θ(n). Applying the Master Theorem (with a= 2, b = 2, and d = 1), we get

T(n)∈Θ (nlogn).Thenecessitytopresortinputpointsdoesnotchangetheoverallefficiencyclass if

sorting is done by a O(nlogn)algorithm such as merge sort. In fact, this is the best efficiency

