# **CONTEXT-FREE GRAMMAR (CFG)**

CFG stands for context-free grammar. It is is a formal grammar which is used to generate all possible patterns of strings in a given formal language. Context-free grammar G can be defined by four tuples as:

 $\mathbf{G} = (\mathbf{V}, \mathbf{T}, \mathbf{P}, \mathbf{S})$ 

### Where,

**G** is the grammar, which consists of a set of the production rule. It is used to generate the string of a language.

T is the final set of a terminal symbol. It is denoted by lower case letters.

V is the final set of a non-terminal symbol. It is denoted by capital letters.

**P** is a set of production rules, which is used for replacing non-terminals symbols(on the left side of the production) in a string with other terminal or non-terminal symbols(on the right side of the production).

S is the start symbol which is used to derive the string. We can derive the string by repeatedly replacing a non-terminal by the right-hand side of the production until all non-terminal have been replaced by terminal symbols.

### Example :

Construct the CFG for the language having any number of a's over the set  $\sum = \{a\}$ .

### Solution:

As we know the regular expression for the above language is

# 1. **r.e.** = $a^*$

Production rule for the Regular expression is as follows:

- 1.  $S \rightarrow aS$  rule 1
- 2.  $S \rightarrow \epsilon$  rule 2

Now if we want to derive a string "aaaaaaa", we can start with start symbols.

- 1. S
- 2. aS
- 3. aaS rule 1
- 4. aaaS rule 1
- 5. aaaaS rule 1
- 6. aaaaaS rule 1

- 7. aaaaaaS rule 1
- 8. aaaaaaa rule 2
- 9. aaaaaa

The r.e. = a\* can generate a set of string { $\epsilon$ , a, aa, aaa,....}. We can have a null string because S is a start symbol and rule 2 gives S  $\rightarrow \epsilon$ .

#### **Example :**

Construct a CFG for the regular expression  $(0+1)^*$ 

#### Solution:

The CFG can be given by,

- 1. Production rule (P):
- 2.  $S \rightarrow 0S \mid 1S$
- 3.  $S \rightarrow \epsilon$

The rules are in the combination of 0's and 1's with the start symbol. Since  $(0+1)^*$  indicates  $\{\varepsilon, 0, 1, 01, 10, 00, 11, \ldots\}$ . In this set,  $\varepsilon$  is a string, so in the rule, we can set the rule  $S \rightarrow \varepsilon$ .

### **Example :**

Construct a CFG for a language  $L = \{wcwR \mid where w \notin (a, b)^*\}$ .

#### Solution:

The string that can be generated for a given language is {aacaa, bcb, abcba, bacab, abbcbba, ....}

The grammar could be:

- 1.  $S \rightarrow aSa$  rule 1
- 2.  $S \rightarrow bSb$  rule 2
- 3.  $S \rightarrow c$  rule 3

Now if we want to derive a string "abbcbba", we can start with start symbols.

- 1.  $S \rightarrow aSa$
- 2.  $S \rightarrow abSba$  from rule 2
- 3.  $S \rightarrow abbSbba$  from rule 2
- 4.  $S \rightarrow abbcbba$  from rule 3

Thus any of this kind of string can be derived from the given production rules.

#### Example 4:

Construct a CFG for the language  $L = a^n b^{2n}$  where  $n \ge 1$ .

### Solution:

The string that can be generated for a given language is {abb, aabbbb, aaabbbbbb....}.

The grammar could be:

1.  $S \rightarrow aSbb \mid abb$ 

Now if we want to derive a string "aabbbb", we can start with start symbols.

- 1.  $S \rightarrow aSbb$
- 2.  $S \rightarrow aabbbb$

Derivation

Derivation is a sequence of production rules. It is used to get the input string through these production rules. During parsing, we have to take two decisions. These are as follows:

- $\circ$  We have to decide the non-terminal which is to be replaced.
- We have to decide the production rule by which the non-terminal will be replaced.

We have two options to decide which non-terminal to be placed with production rule.

#### 1. Leftmost Derivation:

In the leftmost derivation, the input is scanned and replaced with the production rule from left to right. So in leftmost derivation, we read the input string from left to right.

### Example:

# **Production rules:**

- 1. E = E + E
- 2. E = E E
- 3. E = a | b

# Input

1. a - b + a

### The leftmost derivation is:

- 1. E = E + E
- 2. E = E E + E
- 3. E = a E + E
- 4. E = a b + E
- 5. E = a b + a

### 2. Rightmost Derivation:

In rightmost derivation, the input is scanned and replaced with the production rule from right to left. So in rightmost derivation, we read the input string from right to left.

#### Example

**Production rules:** 

- 1. E = E + E
- 2. E = E E
- 3. E = a | b

Input

1. a - b + a

## The rightmost derivation is:

- 1. E = E E
- 2. E = E E + E
- 3. E = E E + a
- 4. E = E b + a
- 5. E = a b + a

When we use the leftmost derivation or rightmost derivation, we may get the same string. This type of derivation does not affect on getting of a string.

#### Examples of Derivation:

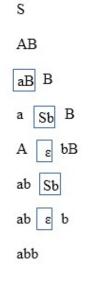
### **Example :**

Derive the string "abb" for leftmost derivation and rightmost derivation using a CFG given by,

- 1.  $S \rightarrow AB \mid \epsilon$
- 2.  $A \rightarrow aB$
- 3.  $B \rightarrow Sb$

Solution:

Leftmost derivation:



# **Rightmost derivation:**



# Example :

Derive the string "aabbabba" for leftmost derivation and rightmost derivation using a CFG given by,

- 1.  $S \rightarrow aB \mid bA$
- 2.  $S \rightarrow a \mid aS \mid bAA$
- 3.  $S \rightarrow b \mid aS \mid aBB$

# Solution:

# Leftmost derivation:

- 1. S
- 2.  $aB \qquad S \rightarrow aB$
- 3.  $aaBB \qquad B \rightarrow aBB$

- 4.  $aabB \qquad B \rightarrow b$
- 5. aabbS  $B \rightarrow bS$
- 6. aabbaB  $S \rightarrow aB$
- 7. aabbabS  $B \rightarrow bS$
- 8. aabbabbA  $S \rightarrow bA$
- 9. aabbabba  $A \rightarrow a$

# **Rightmost derivation:**

- 1. S
- 2.  $aB \qquad S \rightarrow aB$
- 3.  $aaBB \qquad B \rightarrow aBB$
- 4.  $aaBbS \quad B \rightarrow bS$
- 5. aaBbbA  $S \rightarrow bA$
- 6. aaBbba  $A \rightarrow a$
- 7. aabSbba  $B \rightarrow bS$
- 8. aabbAbba  $S \rightarrow bA$
- 9. aabbabba  $A \rightarrow a$

# Example :

Derive the string "00101" for leftmost derivation and rightmost derivation using a CFG given by,

- 1.  $S \rightarrow A1B$
- 2.  $A \rightarrow 0A \mid \epsilon$
- 3.  $B \rightarrow 0B \mid 1B \mid \epsilon$

# Solution:

### Leftmost derivation:

- 1. S
- 2. A1B
- 3. 0A1B
- 4. 00A1B
- 5. 001B
- 6. 0010B
- 7. 00101B
- 8. 00101

### **Rightmost derivation:**

1. S



- 2. A1B
- 3. A10B
- 4. A101B
- 5. A101
- 6. 0A101
- 7. 00A101
- 8. 00101

