
NORMAL FORMS FOR CFG

Simplification of CFG

As we have seen, various languages can efficiently be represented by a context

grammar are not always optimized that means

terminal). Having extra symbols, unnecessary increase the length of grammar. Simplification of

grammar means reduction of grammar by removing useless symbols. The properties of reduced

grammar are given below:

1. Each variable (i.e. non-terminal) and each terminal of G appears in the derivation of some

word in L.

2. There should not be any production as X

3. If ε is not in the language L then there need not to be the production X →

Let us study the reduction process in detail.

Removal of Useless Symbols

A symbol can be useless if it does not appear on the right

not take part in the derivation of any string. That symbol is known as a usel

variable can be useless if it does not take part in the derivation of any string. That variable is known as

a useless variable.

For Example:

1. T → aaB | abA | aaT

2. A → aA

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

NORMAL FORMS FOR CFG

As we have seen, various languages can efficiently be represented by a context-free grammar. All the

grammar are not always optimized that means the grammar may consist of some extra symbols(non

terminal). Having extra symbols, unnecessary increase the length of grammar. Simplification of

grammar means reduction of grammar by removing useless symbols. The properties of reduced

terminal) and each terminal of G appears in the derivation of some

There should not be any production as X → Y where X and Y are non-terminal.

If ε is not in the language L then there need not to be the production X → ε.

reduction process in detail.

A symbol can be useless if it does not appear on the right-hand side of the production rule and does

not take part in the derivation of any string. That symbol is known as a useless symbol. Similarly, a

variable can be useless if it does not take part in the derivation of any string. That variable is known as

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

free grammar. All the

the grammar may consist of some extra symbols(non-

terminal). Having extra symbols, unnecessary increase the length of grammar. Simplification of

grammar means reduction of grammar by removing useless symbols. The properties of reduced

terminal) and each terminal of G appears in the derivation of some

terminal.

hand side of the production rule and does

ess symbol. Similarly, a

variable can be useless if it does not take part in the derivation of any string. That variable is known as

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8501-THEORY OF COMPUTATION

3. B → ab | b

4. C → ad

In the above example, the variable 'C' will never occur in the derivation of any string, so the

production C → ad is useless. So we will eliminate it, and the other productions are written in such a

way that variable C can never reach from the starting variable 'T'.

Production A → aA is also useless because there is no way to terminate it. If it never terminates, then

it can never produce a string. Hence this production can never take part in any derivation.

To remove this useless production A → aA, we will first find all the variables which will never lead to

a terminal string such as variable 'A'. Then we will remove all the productions in which the variable 'B'

occurs.

Elimination of ε Production

The productions of type S → ε are called ε productions. These type of productions can only be

removed from those grammars that do not generate ε.

Step 1: First find out all nullable non-terminal variable which derives ε.

Step 2: For each production A → a, construct all production A → x, where x is obtained from a by

removing one or more non-terminal from step 1.

Step 3: Now combine the result of step 2 with the original production and remove ε productions.

Example:

Remove the production from the following CFG by preserving the meaning of it.

1. S → XYX

2. X → 0X | ε

3. Y → 1Y | ε

Solution:

Now, while removing ε production, we are deleting the rule X → ε and Y → ε. To preserve the

meaning of CFG we are actually placing ε at the right-hand side whenever X and Y have appeared.

Let us take

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8501-THEORY OF COMPUTATION

1. S → XYX

If the first X at right-hand side is ε. Then

1. S → YX

Similarly if the last X in R.H.S. = ε. Then

1. S → XY

If Y = ε then

1. S → XX

If Y and X are ε then,

1. S → X

If both X are replaced by ε

1. S → Y

Now,

1. S → XY | YX | XX | X | Y

Now let us consider

1. X → 0X

If we place ε at right-hand side for X then,

1. X → 0

2. X → 0X | 0

Similarly Y → 1Y | 1

Collectively we can rewrite the CFG with removed ε production as

1. S → XY | YX | XX | X | Y

2. X → 0X | 0

3. Y → 1Y | 1

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8501-THEORY OF COMPUTATION

Removing Unit Productions

The unit productions are the productions in which one non-terminal gives another non-terminal. Use

the following steps to remove unit production:

Step 1: To remove X → Y, add production X → a to the grammar rule whenever Y → a occurs in the

grammar.

Step 2: Now delete X → Y from the grammar.

Step 3: Repeat step 1 and step 2 until all unit productions are removed.

For example:

1. S → 0A | 1B | C

2. A → 0S | 00

3. B → 1 | A

4. C → 01

Solution:

S → C is a unit production. But while removing S → C we have to consider what C gives. So, we can

add a rule to S.

1. S → 0A | 1B | 01

Similarly, B → A is also a unit production so we can modify it as

1. B → 1 | 0S | 00

Thus finally we can write CFG without unit production as

1. S → 0A | 1B | 01

2. A → 0S | 00

3. B → 1 | 0S | 00

4. C → 01

Chomsky's Normal Form (CNF)

CNF stands for Chomsky normal form. A CFG(context free grammar) is in CNF(Chomsky normal

form) if all production rules satisfy one of the following conditions:

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8501-THEORY OF COMPUTATION

o Start symbol generating ε. For example, A → ε.

o A non-terminal generating two non-terminals. For example, S → AB.

o A non-terminal generating a terminal. For example, S → a.

For example:

1. G1 = {S → AB, S → c, A → a, B → b}

2. G2 = {S → aA, A → a, B → c}

The production rules of Grammar G1 satisfy the rules specified for CNF, so the grammar G1 is in

CNF. However, the production rule of Grammar G2 does not satisfy the rules specified for CNF as S

→ aZ contains terminal followed by non-terminal. So the grammar G2 is not in CNF.

Steps for converting CFG into CNF

Step 1: Eliminate start symbol from the RHS. If the start symbol T is at the right-hand side of any

production, create a new production as:

1. S1 → S

Where S1 is the new start symbol.

Step 2: In the grammar, remove the null, unit and useless productions. You can refer to

the Simplification of CFG.

Step 3: Eliminate terminals from the RHS of the production if they exist with other non-terminals or

terminals. For example, production S → aA can be decomposed as:

1. S → RA

2. R → a

Step 4: Eliminate RHS with more than two non-terminals. For example, S → ASB can be

decomposed as:

1. S → RS

2. R → AS

Example:

Convert the given CFG to CNF. Consider the given grammar G1:

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8501-THEORY OF COMPUTATION

1. S → a | aA | B

2. A → aBB | ε

3. B → Aa | b

Solution:

Step 1: We will create a new production S1 → S, as the start symbol S appears on the RHS. The

grammar will be:

1. S1 → S

2. S → a | aA | B

3. A → aBB | ε

4. B → Aa | b

Step 2: As grammar G1 contains A → ε null production, its removal from the grammar yields:

1. S1 → S

2. S → a | aA | B

3. A → aBB

4. B → Aa | b | a

Now, as grammar G1 contains Unit production S → B, its removal yield:

1. S1 → S

2. S → a | aA | Aa | b

3. A → aBB

4. B → Aa | b | a

Also remove the unit production S1 → S, its removal from the grammar yields:

1. S0 → a | aA | Aa | b

2. S → a | aA | Aa | b

3. A → aBB

4. B → Aa | b | a

Step 3: In the production rule S0 → aA | Aa, S → aA | Aa, A → aBB and B → Aa, terminal a exists

on RHS with non-terminals. So we will replace terminal a with X:

1. S0 → a | XA | AX | b

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8501-THEORY OF COMPUTATION

2. S → a | XA | AX | b

3. A → XBB

4. B → AX | b | a

5. X → a

Step 4: In the production rule A → XBB, RHS has more than two symbols, removing it from

grammar yield:

1. S0 → a | XA | AX | b

2. S → a | XA | AX | b

3. A → RB

4. B → AX | b | a

5. X → a

6. R → XB

Hence, for the given grammar, this is the required CNF.

Greibach Normal Form (GNF)

GNF stands for Greibach normal form. A CFG(context free grammar) is in GNF(Greibach normal

form) if all the production rules satisfy one of the following conditions:

o A start symbol generating ε. For example, S → ε.

o A non-terminal generating a terminal. For example, A → a.

o A non-terminal generating a terminal which is followed by any number of non-terminals. For

example, S → aASB.

For example:

1. G1 = {S → aAB | aB, A → aA| a, B → bB | b}

2. G2 = {S → aAB | aB, A → aA | ε, B → bB | ε}

The production rules of Grammar G1 satisfy the rules specified for GNF, so the grammar G1 is in

GNF. However, the production rule of Grammar G2 does not satisfy the rules specified for GNF as A

→ ε and B → ε contains ε(only start symbol can generate ε). So the grammar G2 is not in GNF.

Steps for converting CFG into GNF

Step 1: Convert the grammar into CNF.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8501-THEORY OF COMPUTATION

If the given grammar is not in CNF, convert it into CNF. You can refer the following topic to convert

the CFG into CNF: Chomsky normal form

Step 2: If the grammar exists left recursion, eliminate it.

If the context free grammar contains left recursion, eliminate it. You can refer the following topic to

eliminate left recursion: Left Recursion

Step 3: In the grammar, convert the given production rule into GNF form.

If any production rule in the grammar is not in GNF form, convert it.

Example:

1. S → XB | AA

2. A → a | SA

3. B → b

4. X → a

Solution:

As the given grammar G is already in CNF and there is no left recursion, so we can skip step 1 and

step 2 and directly go to step 3.

The production rule A → SA is not in GNF, so we substitute S → XB | AA in the production rule A

→ SA as:

1. S → XB | AA

2. A → a | XBA | AAA

3. B → b

4. X → a

The production rule S → XB and B → XBA is not in GNF, so we substitute X → a in the production

rule S → XB and B → XBA as:

1. S → aB | AA

2. A → a | aBA | AAA

3. B → b

4. X → a

Now we will remove left recursion (A → AAA), we get:

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8501-THEORY OF COMPUTATION

1. S → aB | AA

2. A → aC | aBAC

3. C → AAC | ε

4. B → b

5. X → a

Now we will remove null production C → ε, we get:

1. S → aB | AA

2. A → aC | aBAC | a | aBA

3. C → AAC | AA

4. B → b

5. X → a

The production rule S → AA is not in GNF, so we substitute A → aC | aBAC | a | aBA in production

rule S → AA as:

1. S → aB | aCA | aBACA | aA | aBAA

2. A → aC | aBAC | a | aBA

3. C → AAC

4. C → aCA | aBACA | aA | aBAA

5. B → b

6. X → a

The production rule C → AAC is not in GNF, so we substitute A → aC | aBAC | a | aBA in production

rule C → AAC as:

1. S → aB | aCA | aBACA | aA | aBAA

2. A → aC | aBAC | a | aBA

3. C → aCAC | aBACAC | aAC | aBAAC

4. C → aCA | aBACA | aA | aBAA

5. B → b

6. X → a

Hence, this is the GNF form for the grammar G.

