
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8602 COMPILER DESIGN

PREDICTIVE PARSING

It is possible to build a non recursive predictive parser by maintaining a stack explicitly,

rather than implicitly via recursive calls. The key problem during predictive parsing is that of

determining the production to be applied for a non terminal . The non recursive parser in figure

looks up the production to be applied in parsing table. In what follows, we shall see how the table

can be constructed directly from certain grammars.

Model of a nonrecursive predictive parser

A table-driven predictive parser has an input buffer, a stack, a parsing table, and an output

stream. The input buffer contains the string to be parsed, followed by $, a symbol used as a right

endmarker to indicate the end of the input string. The stack contains a sequence of grammar symbols

with $ on the bottom, indicating the bottom of the stack. Initially, the stack contains the start symbol

of the grammar on top of $. The parsing table is a two dimensional array M[A,a] where A is a non

terminal, and a is a terminal or the symbol $. The parser is controlled by a program that behaves as

follows. The program considers X, the symbol on the top of the stack, and a, the current input symbol.

These two symbols determine the action of the parser. There are three possibilities.

1 If X= a=$, the parser halts and announces successful completion of

parsing.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8602 COMPILER DESIGN

2 If X=a!=$, the parser pops X off the stack and advances the input pointer to the next

input symbol.

3 If X is a non terminal, the program consults entry M[X,a] of the parsing table M. This

entry will be either an X-production of the grammar or an error entry. If, for example, M[X,a]={X-

>UVW}, the parser replaces X on top of the stack by WVU(with U on top). As output, we shall

assume that the parser just prints the production used; any other code could be executed here. If

M[X,a]=error, the parser calls an error recovery routine.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8602 COMPILER DESIGN

Algorithm for Non recursive predictive Parsing.

Input. A string w and a parsing table M for grammar G.

Output. If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Method. Initially, the parser is in a configuration in which it has $S on the stack with S, the start symbol

of G on top, and w$ in the input buffer. The program that utilizes the predictive parsing table M to

produce a parse for the input is shown in Fig.

set ip to point to the first symbol of w$.

repeat

let X be the top stack symbol and a the symbol pointed to by ip. if X is

a terminal of $ then

if X=athen

pop X from the stack and advance ip

elseerror()

else

if M[X,a]=X->Y1Y2...Yk then begin

pop X from the stack;

push Yk,Yk-1...Y1 onto the stack, with Y1 on top;

output the production X-> Y1Y2...Yk

end

else error()

untilX=$ /* stack is empty*/

Predictive parsing table construction:

The construction of a predictive parser is aided by two functions associated with a grammar G :

1. FIRST

2. FOLLOW

Rules for first():

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8602 COMPILER DESIGN

1. If X is terminal, then FIRST(X) is{X}.

2. If X → ε is a production, then add ε toFIRST(X).

3. If X is non-terminal and X → aα is a production then add a toFIRST(X).

4. If X is non-terminal and X → Y1 Y2…Yk is a producƟon, then place a in FIRST(X)if for some i, a

is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1);that is, Y1,….Yi-1=> ε. If ε is in FIRST(Yj) for

all j=1,2,..,k, then add ε to FIRST(X).

Rules for follow():

1. If S is a start symbol, then FOLLOW(S) contains$.

2. If there is a production A →αBβ, then every thing in FIRST(β)except ε is placed in

follow(B).

3. If there is a production A → αB, or a producƟon A → αBβ where FIRST(β) contains ε, then

everything in FOLLOW(A) is in FOLLOW(B).

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8602 COMPILER DESIGN

Algorithm for construction of predictive parsing table:

Input : Grammar G Output

: Parsing table M Method :

1. For each production A → α of the grammar, do steps 2 and3.

2. For each terminal a in FIRST(α), add A → α to M[A,a].

3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If εis in FIRST(α)

and $ is in FOLLOW(A) , add A → α to M[A,$].

4. Make each undefined entry of M beerror.

Example:

Consider the following grammar :

E→E+T|T

T→T*F|F

F→(E)|id

After eliminating left-recursion the grammar is E

→TE’

E’ → +TE’ | ε

T →FT’

T’ → *FT’ | ε

F → (E)|id

First() :

FIRST(E) = { (,id}

FIRST(E’) ={+ , ε}

FIRST(T) = { (,id}

FIRST(T’) = {*, ε}

FIRST(F) = { (, id }

Follow(): FOLLOW(E) = {

$,) }

FOLLOW(E’) = { $,) }

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8602 COMPILER DESIGN

FOLLOW(T) = { +, $,) }

FOLLOW(T’) = { +, $,) }

FOLLOW(F) = {+, * , $,) }

Predictive parsing Table

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8602 COMPILER DESIGN

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8602 COMPILER DESIGN

Stack Implementation

LL(1) grammar:

 ROHINI COLLEGE OF ENGINEERING AND
TECHNOLOGY

 CS8602 COMPILER DESIGN

Theparsingtableentriesaresingleentries.Soeachlocationhasnotmorethanoneentry.Thisty

pe of grammar is called LL(1)grammar.

Consider this following grammar:

S→iEtS | iEtSeS| a

E→b

After eliminating left

factoring, we have

S→iEtSS’|a

S’→ eS | ε

E→b

To construct a parsing table, we need FIRST() and FOLLOW() for all the non-

terminals. FIRST(S) = { i, a }

FIRST(S’) = {e, ε }

FIRST(E) = { b}

FOLLOW(S) = { $,e }

FOLLOW(S’) = { $,e }

FOLLOW(E) = {t}

Parsing table:

Since there are more than one production, the grammar is not

LL(1) grammar. Actions performed in predictive parsing:

 ROHINI COLLEGE OF ENGINEERING AND
TECHNOLOGY

 CS8602 COMPILER DESIGN

1. Shift

2. Reduce

3. Accept

4. Error

Implementation of predictive parser:

1. Elimination of left recursion, left factoring and ambiguous grammar.

2. Construct FIRST() and FOLLOW() for all non-terminals.

3. Construct predictive parsing table.

4. Parse the given input string using stack and parsing table.

