
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

 PARAMETERS AND ARGUMENTS

Inside the function, the arguments are assigned to variables called parameters. Here is a

definition for a function that takes an argument:

Function Arguments

Types of Formal arguments:

 Required arguments

 Default arguments

 Keyword arguments

 Variable-length arguments

1. Required Arguments

Required arguments are the arguments passed to a function in correct positional order.

Here, the number of arguments in the function call should match exactly with the function

definition.

Example:

>>>def add(a,b): # add() needs two arguments, if not it shows error

return a+b

>>>a=10

>>>b=20

>>>print("Sum of ", a ,"and ", b, "is" , add(a,b))

Output:

Sum of 10 and 20 is 30

2. Default Arguments:

A default argument is an argument that assumes a default value if a value is not provided

in the function call for that argument.

Example:

>>>def add(a,b=0):

print ("Sum of ", a ,"and ", b, "is" ,a+b)

>>>a=10

>>>b=20

>>>add(a,b)

>>>add(a)

Output:

Sum of 10 and 20 is 30

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

Sum of 10 and 0 is 10

3. Keyword Arguments:

Keyword arguments are related to the function calls. When you use keyword arguments

in a function call, the caller identifies the arguments by the parameter name.

Example:

>>>def add(a,b):

print ("Sum of ", a ,"and ", b, "is" ,a+b)

>>>a=10

>>>b=20

>>>add(b=a,a=b)

Output:

Sum of 20 and 10 is 30

4. Variable-Length Arguments:

The special syntax *args in function definitions in python is used to pass a variable

number of arguments to a function. It is used to pass a non-keyworded, variable-length argument

list.

 The syntax is to use the symbol * to take in a variable number of arguments; by

convention, it is often used with the word args.

 What *args allows you to do is take in more arguments than the number of formal

arguments that you previously defined. With *args, any number of extra arguments can

be tacked on to your current formal parameters

Example:

>>>def myFun(*argv):

for arg in argv:

print (arg)

>>>myFun('Hello', 'Welcome', 'to', 'Learn Python')

Output:

Hello

Welcome

to

Learn Python

The Anonymous Functions or Lambda Functions

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

GE 8151 – PROBLEM SOLVING AND PYTHON PROGRAMMING

In Python, anonymous function is a function that is defined without a name. While

normal functions are defined using the def keyword, in Python anonymous functions are defined

using the lambda keyword. Hence, anonymous functions are also called lambda functions.

Syntax:

Example:

>>>double = lambda x: x * 2

print(double(5))

Output:

10

In the above program, lambda x: x * 2 is the lambda function. Here x is the argument and

x * 2 is the expression that gets evaluated and returned.

The same Anonymous function can be written in normal function as

>>>def double(x):

 return x * 2

>>>double(5)

lambda arguments: expression

