5.4 Design Of Eccentric Shear And Moment Resisting Connections Girders

Example 4

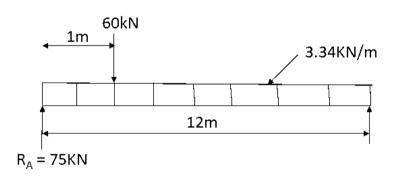
Design a hand operated overhead crane, which is provided in a shed, whose details are

Capacity of crane = 50kN

Longitudinal spacing of column = 6m

Center to center distance of gantry girder = 12m

wheel spacing = 3m


Edge distance = 1m

Weight of crane girder = 40kN

Weight of trolley car = 10kN

Solution:

Step 1 Find wheel load

To find support reaction,

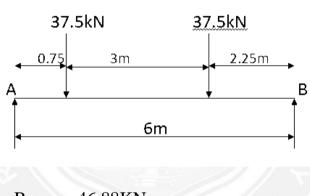
Weight of crane girder per meter span

= 40/12

= 3.34 kN/m

Weight of crane and trolley added together and placed at 1m

$$= 50+10$$


$$= 60kN$$

$$R_{A}x12 = 60x11 + 3.34x12^{2}/2$$

$$R_{A} = 75kN$$
Wheel load = $R_{A}/2$

$$= 37.5KN$$

Step 2 Find max BM in gantry girder

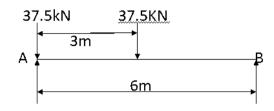
$$R_A = 46.88KN$$

$$R_B = 28.12KN$$

Max BM =
$$28.12x2.25$$

= 63.27 kNm (at trailing wheel)

Adding 10% for impact,


$$M1 = 1.1x63.27$$

= 69.60kNm

Max BM due to self weight of girder and rail taking total weight as 1.2kN/m

M2 =
$$w1^2/8$$

= $1.2x6^2/8$
= $5.4kNm$

Total BM, M = 75KNm

Step 3 Find max shear

$$S_F = R_A$$

= $(37.5x6 + 37.5x3)/6$
= $56.25KN$

Step 4 Find lateral loads

25% of lateral load/num of wheel

$$=0.025 \times 60/2$$

= 0.75KN

Max BM due to lateral load,

Step 5 Selection of section

Economic depth of section

$$= L/15$$

= 6000/15

= 400 mm

Let us try ISMB 450@710.2N/m

IS Code 800;2007, pg138,

Flange criteria, $b/t_f = 75/17.4$

$$= 4.31 < 9.4C$$
web criteria, $d/t_w = 415.4/9.4$

: section is plastic

Step 6 Shear capacity

$$F_{vd} = fy \times A/\sqrt{3 \times \gamma_{mo}}$$

$$= 250\times450\times9.4/\sqrt{3\times1.10}$$

$$= 555043 \text{ N}$$

$$= 5555\text{KN}$$

$$F_{v}/F_{vd} = 56.25\times1.5/555$$

= 0.152 < 0.6

Check for torsional buckling,

$$\begin{split} f_{f}/t_{w} &\leq 17.4/9.4 &= 1.85 < 2 \\ \beta_{LT} &= 1.2 \text{ for plastic section} \\ M_{cr} &= \text{elastic critical moment} \\ M_{cr} &= \beta_{LT} \pi^{2EI.h/2(KL)^{2} [1+1/20[(KL/r_{y})/(h/tf)]^{2}]^{0.5} \\ KL &= 1.0x6000 \\ &= 6000 \text{mm} \\ M_{cr} &= 1.2\pi^{2}x2x10^{5}x834x10^{4}x450 / \\ &= 2x6000^{2}\{1+1/20[(6000/30.1)/(450/17.4)]^{2}\}^{0.5} \end{split}$$

Factored longitudinal moment,

$$M_f = 75x1.5$$

 $= 246 \times 10^{6} \text{ Nmm}$

$$= 112.5 kNm$$

Factored lateral moment,

$$\begin{aligned} M_{fL} &= 1.27x1.5 \\ &= 1.91kNm \end{aligned}$$

Lateral BM capacity,

$$\begin{split} M_{dL} &= Z_{py}.f_y/1.10 \\ &= [~Z_{ey}/2~x~shape~factor~x~fy]/1.10 \\ &= [(111.2x10^3)/2~x~1.15x250]/1.10 \\ &= 14.53x10^6~Nmm \\ &= 14.53~kNm \end{split}$$

For safety,

$$\begin{aligned} M_{f}/M_{d}[longitudinal + M_{f}/M_{d}]lateral &\leq 1.0 \\ &= 112.5/174.34 + 1.91/14.53 \\ &= 0.78 < 1.0 \end{aligned}$$

Hence, section selected is adequate and safe.