1.6. MOHR'S CIRCLE

Mohr's circle is a graphical method of finding normal, tangential and resultant stresses on an oblique plane. Mohr's circle will be drawn for the following cases:

- (i) A body subjected to two mutually perpendicular principal tensile stresses of unequal intensities
- (ii) A body subjected to two mutually perpendicular principal stresses which are unequal and unlike (i.e., one is tensile and other is compressive).
- (iii) A body subjected to two mutually perpendicular principal tensile stresses accompanied by a simple shear stress.

1.26.1 Mohr's Circle When A Body Is Subjected To Two Mutually Perpendicular Principal Tensile Stresses Of Unequal Intensities.

Consider a rectangular body subjected to two mutually perpendicular principal tensile stresses of unequal intensities. It is required to find the resultant stress on an oblique plane.

Let $\sigma_1 = \text{Major tensile stress}$

 σ_2 = Minor tensile stress and

 θ = Angle made by the oblique plane with the axis of minor tensile stress.

Mohr's Circle is drawn as follows:

Take any point A and draw a horizontal line through A. Take $AB = \sigma_1$

and $AC = \sigma_2$ towards right from A to some suitable scale. With BC as diameter describe a circle. Let O is the centre of the circle. Now through O, draw a line OE making an angle 20 with OB.

From E, draw ED perpendicular on AB. Join AE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE

From Fig.

Length AD = Normal stress on oblique plane

Length ED = Tangential stress on oblique plane.

Length AE = Resultant stress on oblique plane.

Radius of Mohr's circle =
$$\frac{\sigma_1 - \sigma_2}{2}$$

Angle \emptyset = obliquity.

Problem1.25.The tensile stresses at a point across two mutually perpendicular planes are 120N/mm² and 60N/mm². Determine the normal, tangential and resultant stresses on a plane inclined at 30° to the axis of minor stress by Mohr's circle method

Given Data

Major principal stress, $\sigma_1 = 120 \text{N/mm}^2 \text{(tensile)}$

Minor principal stress, $\sigma_2 = 60 \text{N/mm}^2 \text{(tensile)}$

Angle of oblique plane with the axis of minor principal stress,

$$\theta = 30^{\circ}$$

To find

The normal, tangential and resultant stresses

Solution

Scale. Let $1 \text{cm} = 10 \text{N/mm}^2$

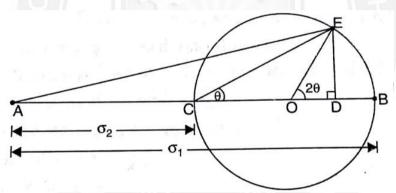
Then

$$\sigma_1 = \frac{120}{10} = 12cm$$
 and

$$\sigma_2 = \frac{60}{10} = 6cm$$

Mohr's circle is drawn as:

Take any point A and draw a horizontal line through A. Take AB = σ_1 =12cm and AC



$$=$$
 σ_2 =6cm.

With BC as

diameter (i.e.,BC=12-6=6cm) describe a circle. Let O is the centre of the circle. Through O, draw a line OE making an angle 2θ (i.e., 2×30 =60°) with OB. From E, draw ED perpendicular to CB. Join AE. Measure the length AD, ED and AE.

By measurements:

Length AD = 10.50cm

Length ED = 2.60cm

Length AE = 10.82cm

Then normal stress = Length $AD \times Scale$

 $= 10.50 \times 10 = 105 \text{N/mm}^2$

Tangential or shear stress = Length ED \times Scale

 $= 2.60 \times 10 = 26 \text{ N/mm}^2.$

Resultant stress = Length $AE \times Scale$.

$$=10.82\times10=$$
 108.2N/mm².

1.26.2. Mohr's Circle when a Body is subjected to two Mutually perpendicular Principal stresses which are Unequal and Unlike (i.e., one is Tensile and other is Compressive).

Consider a rectangular body subjected to two mutually perpendicular principal stresses which are unequal and one of them is tensile and the other is compressive. It is required to find the resultant stress on an oblique plane.

Let $\sigma_1 = \text{Major principal tensile stress}$

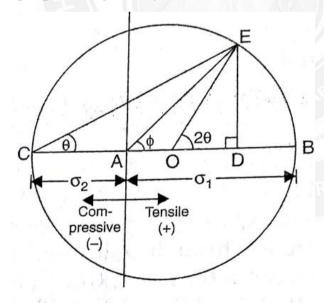
 σ_2 = Minor principal compressive stress and

 θ = Angle made by the oblique plane with the axis of minor tensile stress.

Mohr's Circle is drawn as follows:

Take any point A and draw a horizontal line through A on both sides of A as shown in fig. Take $AB = \sigma_1$ (+) towards right of A and $AC = \sigma_2$ (-)towards left of A to some suitable scale. Bisect BC at O. With O as centre and radius equal to CO or OB, draw a circle. Through O draw a line OE making an angle 20 with OB.

From E, draw ED perpendicular to AB.Join AE and CE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE



From Fig.

Length AD = Normal stress on oblique plane

Length ED = Tangential stress on oblique plane.

Length AE = Resultant stress on oblique plane.

Radius of Mohr's circle =
$$\frac{\sigma_1 + \sigma_2}{2}$$

Angle $\emptyset = \text{obliquity}.$

Problem1.26. The stresses at a point in a bar are 200N/mm^2 (tensile) and 100N/mm^2 (compressive). Determine the resultant stress in magnitude and direction on a plane inclined at 60° to the axis of major stress. Also determine the maximum intensity of shear stress in the material at the point.

Given Data

Major principal stress, $\sigma_1 = 200 \text{N/mm}^2$

Minor principal stress, $\sigma_2 = -100 \text{N/mm}^2$

(-ve sign is due to compressive stress)

Angle of oblique plane with the axis of minor principal stress,

$$\theta = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

To find

The Magnitude and direction Resultant stress and maximum intensity of shear stress

Solution

Scale. Let $1 \text{cm} = 20 \text{N/mm}^2$

Then

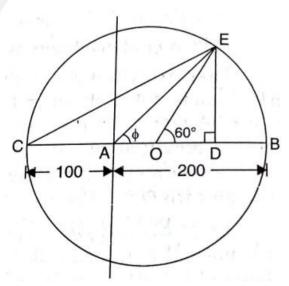
$$\sigma_1 = \frac{200}{20} = 10$$
cm and

$$\sigma_2 = -\frac{100}{20} = -5$$
cm

Mohr's circle is drawn as:

Take any point A and draw a horizontal line through A on both sides of A as shown in fig. Take $AB = \sigma_1 = 10$ cm towards right of A and $AC = \sigma_2 = -5$ cm towards left of A to some suitable scale. Bisect BC at O. With O as centre and radius equal to CO or OB, draw a circle. Through O draw a line OE making an angle 2θ (i.e., $2\times30=60^{\circ}$) with OB.

From E, draw ED perpendicular to AB.Join AE and CE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE



By measurements:

Length AD = 6.25cm

Length ED = 6.5cm and

Length AE = 9.0cm

Then normal stress = Length $AD \times Scale$

 $= 6.25 \times 20 = 125 \text{N/mm}^2$

Tangential or shear stress = Length ED \times Scale

 $= 6.5 \times 20 = 130 \text{ N/mm}^2$.

Resultant stress = Length $AE \times Scale$.

 $= 9 \times 20 = 180 \text{N/mm}^2$

1.26.3. Mohr's Circle when a Body is subjected two mutually perpendicular principal Tensile Stresses Accompanied by a simple shear stress.

Consider a rectangular body subjected to two mutually perpendicular principal tensile stresses of unequal intensities accompanied by a simple shear stress. It is required to find the resultant stress on an oblique plane.

Let $\sigma_1 = \text{Major tensile stress}$

 σ_2 = Minor tensile stress and

 τ = Shear stress across face BC and AD

 θ = Angle made by the oblique plane with the axis of minor tensile stress.

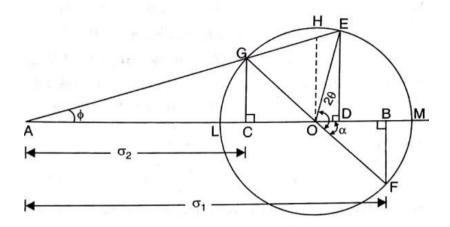
According to the principle of shear stress, the faces AB and CD will also be subjected to a shear stress of τ

Mohr's Circle is drawn as follows:

Take any point A and draw a horizontal line through A. Take $AB = \sigma_1$

and AC = σ_2 towards right from A to some suitable scale. Draw perpendiculars at B and C and cut off BF and CG equal to shear stress τ to the same scale. Bisect BC at O. Now with O as centre and radius equal to OG or OF draw a circle. Through O, draw a line OE making an angle 20 with OF as shown in Fig.

From E, draw ED perpendicular on CB.Join AE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE



From Fig.

Length AD = Normal stress on oblique plane

Length ED = Tangential stress on oblique plane.

Length AE = Resultant stress on oblique plane.

Radius of Mohr's circle =
$$\frac{\sigma_1 - \sigma_2}{2}$$

Angle \emptyset = obliquity

Problem1.27.A rectangular block of material is subjected to a tensile stress of 65N/mm² on one plane and a tensile stress of 35N/mm² on the plane right angles on the former. Each of the above stresses is accompanied by a shear stress of 25N/mm². Determine the Normal and Tangential stress a plane inclined at 45° to the axis of major stress.

Given Data

Major principal stress, $\sigma_1 = 65 N/mm^2$

Minor principal stress, $\sigma_2 = 35 \text{N/mm}^2$

Shear stress, $\tau = 25 \text{N/mm}^2$

Angle of oblique plane with the axis of minor principal stress,

$$\theta = 90^{\circ} - 45^{\circ} = 45^{\circ}$$

To Find

The Normal stress and Tangential stress.

Solution

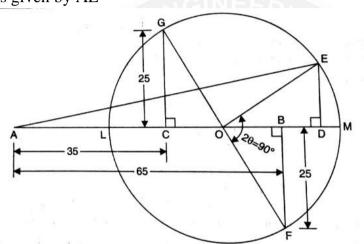
Scale. Let $1 \text{cm} = 10 \text{N/mm}^2$

Then
$$\sigma_1 = \frac{65}{10} = 6.5 \text{ cm}$$
, $\sigma_2 = \frac{35}{10} = 3.5 \text{ cm}$ and $\tau = \frac{25}{10} = 2.5 \text{ cm}$

Mohr's circle is drawn as:

Take any point A and draw a horizontal line through A on both sides of A as shown in fig. Take $AB = \sigma_1 = 6.5$ cm and $AC = \sigma_2 = 3.5$ cm towards right of A to some suitable scale. Draw perpendiculars at B and C and cut off BF and CG equal to shear stress $\tau = 2.5$ cm to the same scale. Bisect BC at O. Now with O as centre and radius equal to OG or OF draw a circle. Through O, draw a line OE making an angle 2θ (i.e $2\times45=90$) with OF as shown in Fig.

From E, draw ED perpendicular on CB.Join AE. Then the normal and tangential stresses on the oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane is given by AE



By measurements:

Length AD = 7.5 cm and

Length ED = 1.5 cm

Then normal stress = Length $AD \times Scale$

 $= 7.5 \times 10 = 75$ N/mm²

Tangential or shear stress= Length ED \times Scale

 $= 1.5 \times 10 = 15 \text{ N/mm}^2.$

IMPORTANT TERMS

$Stress(\sigma)$	$\sigma = \frac{p}{-}$	p = Load
	\mathcal{A}	A = area of cross section
Strain(e)	dl	dl = change in length
	$e = \frac{l}{l}$	$l = original\ length$
Lateral strain	dd dt db	d = diameter
	$=\frac{1}{d}=\frac{1}{t}=\frac{1}{b}$	t = thickness
		b = width
Young's Modulus(E)	$F = \frac{\sigma}{-}$	$\sigma = stress$
	e	e = strain
Shear modulus (or)	$C = \frac{\tau}{-}$	$\tau = shear\ stress$
Modulus of rigidity(C)	arphi = arphi	$\varphi = shear\ strain$

m 1 1 1 1 C					
Total change in length of	$dl = \frac{p}{E} \left[\frac{L_1}{A_1} + \frac{L_2}{A_2} + \frac{L_3}{A_3} + \cdots \right]$ $dl = p \left[\frac{L_1}{A_1 E_1} + \frac{L_2}{A_2 E_2} + \cdots \right]$	For same material (E = same) with			
a bar	$E LA_1 \cdot A_2 \cdot A_3 \cdot J$	different length and diameter			
Total change in length	$dl = n \left[\frac{L_1}{L_2} + \frac{L_2}{L_2} + \dots \right]$	For different material with			
	$\begin{bmatrix} u_1 - p \left[\frac{1}{A_1 E_1} + \frac{1}{A_2 E_2} + \cdots \right] \end{bmatrix}$	different length and diameter			
For composite bar	Total load $P = p_1 + p_2 + \cdots$				
T	Strain $e_1 = e_2 = \cdots$				
	Change in length are same				
Total change in length of	4 P I.	P = load act on the section			
uniform taper rod	$dl = \frac{4 P L}{\pi E d_1 d_2}$	L = length of the section			
dimorni taper rod	nEa_1a_2	E = Young's modulus			
T-4-1-1	D I	$d_1, d_2 = \text{lager \& smaller dia.}$			
Total change in length of	$dl = \frac{PL}{E t (a - b)} \log_e \frac{a}{b}$	t = thickness of bar			
uniform taper rectangular	E t (a - b)	a = width at bigger end			
bar	White is the	b = width at smaller end			
Factor of safety	F S – Ultimate Stress	4/1			
/ 6	$F.S = \frac{Ultimate\ Stress}{Working\ Stress}$				
Poisson's ratio(μ)	Lateral strain	$e_{latl} = \mu \times e$			
	$\mu = \frac{\mu}{Linear\ strain}$				
For three dimensional	σ_1 σ_2 σ_3	Similar for other direction			
stress system	$e_1 - \frac{E}{E} - \mu \frac{A_2}{A_2} - \mu \frac{A_3}{A_3}$	工			
Total change in length	wl^2	w = weight per unit volume of bar			
due to self-weight	$dl = \frac{1}{2F}$				
Volumetric strain(e _v)	dl	For one dimension rectangular bar			
v orametre stram(ev)	$e_v = \frac{m}{l} (1 - 2\mu)$	To one dimension rectangular our			
	$\mu = \frac{Lateral\ stress}{Linear\ strain}$ $e_1 = \frac{\sigma_1}{E} - \mu \frac{\sigma_2}{A_2} - \mu \frac{\sigma_3}{A_3}$ $dl = \frac{wl^2}{2E}$ $e_v = \frac{dl}{l}(1 - 2\mu)$ $e_v = \frac{1}{E}(\sigma_x + \sigma_y + \sigma_z)(1 - 2\mu)$	For three dimension cuboid			
/ C	$e_v = \frac{1}{r}(\sigma_x + \sigma_y + \sigma_z)(1$	Load in x direction			
	_ 2u)	$\sigma_{x} = \frac{\text{2-constant}}{Area in x direction}$			
	26)	Similar for σ_y σ_z			
	dl dd				
	$e_v = \frac{dl}{l} - 2\frac{dd}{d}$	For cylindrical rod			
	l d				
D 11 1 1 (17)	σ				
Bulk modulus(K)	$O_{RC} = \frac{\sigma}{\sqrt{}}$	= AD			
///	$K = \frac{1}{\left(\frac{dV}{V}\right)}$				
	$\left(\frac{\omega}{V} \right)$				
Deletion between election	F 2V(1 2)				
Relation between elastic	$E = 3K(1 - 2\mu)$				
constant E, K, C	7 22(1)				
	$E = 2C(1 + \mu)$				
PRINCIPAL STRESSES A	PRINCIPAL STRESSES AND STRAINS				
A member subjected to a direct stress in one plane					
Direct stress(\sigma)	\mathcal{D}	D - load applied			
Direct stress(σ)	$\sigma = \frac{P}{A}$	P = load applied			
Normal stress	$\sigma_n = \sigma \cos^2 \theta \sigma_n = \tau \sin 2 \theta$				
	1 1				
Tangential (or) shear	$\sigma_t = \frac{\sigma}{2} \sin 2\theta$ $\sigma_t = -\tau \cos 2\theta$				
stress	- 2				
2 12 12					

	1			
Max. Normal stress	$= \sigma$	A = area of cross section		
Max. shear (or)	$=\frac{\sigma}{2}$	θ = angle of oblique plane with the normal cross section of the bar		
Tangential stress	2	the normal cross section of the bar		
Tungentiar stress		$\tau = shear\ stress$		
A member subjected to two like stress in mutually perpendicular direction				
Normal stress	$\sigma_n = \frac{\sigma_1 + \sigma_2}{2} + \frac{\sigma_1 - \sigma_2}{2} \cos 2\theta$	$\sigma_1 = Major$ tensile stress $\sigma_2 = Minor$ tensile stress		
Tangential (or) shear	$\sigma_t = \frac{\sigma_1 - \sigma_2}{2} \sin 2\theta$	θ = angle of oblique plane with		
stress	$0_t - 2$	the normal cross section of the bar		
Resultant stress	$\sigma_R = \sqrt{{\sigma_n}^2 + {\sigma_t}^2}$	When compressive stress put – ve sign		
Position of obliquity	σ_t			
1 osition of obliquity	$\emptyset = \tan^{-1} \frac{\tau}{\sigma_n}$	When tensile force is given, we have to find tensile stress =		
Max. shear stress	$\emptyset = \tan^{-1} \frac{\sigma_t}{\sigma_n}$ $(\sigma_t)_{max} = \frac{\sigma_1 - \sigma_2}{2}$	force/that cross section area		
A member subjected to two like stress in mutually perpendicular direction with shear stress				
Normal stress	$\sigma_n = \frac{\sigma_1 + \sigma_2}{2} + \frac{\sigma_1 - \sigma_2}{2} \cos 2\theta$ $+ \tau \sin 2\theta$	$\sigma_1 = Major \ tensile \ stress$ $\sigma_2 = Minor \ tensile \ stress$ $\theta = \text{angle of oblique plane with}$		
Tangential (or) shear	$ + \tau \sin 2\theta $ $ \sigma_t = \frac{\sigma_1 - \sigma_2}{2} \sin 2\theta - \tau \cos 2\theta $	the normal cross section of the bar		
	$\sigma_t = \frac{1}{2} \sin 2\theta - \tau \cos 2\theta$	the normal cross section of the bar		
stress	TENULAND WORKUMP	When compressive stress put – ve		
Resultant stress	$\sigma_R = \sqrt{\sigma_n^2 + \sigma_t^2}$	sign		
Position of principal	$tan2\theta = \frac{2\tau}{\sigma_1 - \sigma_2}$	When tensile force is given, we		
plane	$\cos \theta = \frac{\tan 2\theta}{\sigma_1 - \sigma_2}$	When tensile force is given, we have to find tensile stress =		
1	THE OPTIMIZE OUTS.	force/that cross section area		
Max. shear (or) Tangential stress	$(\sigma_t)_{max} = \sqrt{\left(\frac{\sigma_1 - \sigma_2}{2}\right)^2 + \tau^2}$ $tan2\theta = \frac{\sigma_2 - \sigma_1}{2\tau}$	When inclined stress is given it		
Position of max. shear	$\sqrt{}$ $\sigma_2 - \sigma_1$	should be resolved into tensile		
	$tan2\theta = \frac{32}{2\tau}$	stress and shear stress		
(or) Tangential stress				
Major principal stress	$\frac{\sigma_1 + \sigma_2}{2} + \sqrt{\left(\frac{\sigma_1 - \sigma_2}{2}\right)^2 + \tau^2}$			
Minor principal stress	$\frac{\sigma_1 + \sigma_2}{2} - \sqrt{\left(\frac{\sigma_1 - \sigma_2}{2}\right)^2 + \tau^2}$			
Mohr,s Circle	1	1		

A body subjected to two mutually perpendicular principal tensile stresses

Step1: select suitable scale

Step2: to draw a horizontal line $AB = \sigma_1$

Step3: to draw AC = σ_2

Step4: draw a circle with BC as diameter with O as centre

Step4: draw a line OE making an angle 2θ with OB

Step5: from E to draw ED perpendicular to AB

Result:

Length AD = Normal stress

Length ED = Tangential (or) shear stress

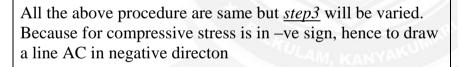
Length AE = Resultant stress

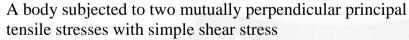
Length OC = OB = Radius of mohr's circle = Max.shear

stress

Angle of obliquity = $2\emptyset = \angle EAD$

A body subjected to two mutually perpendicular principal tensile stresses which are unlike (Tensile and compressive)





Step1: select suitable scale

Step2: to draw a horizontal line AB = σ_1

Step3: to draw AC = σ_2

Step4: draw a perpendicular at B and C as BF and $CG = \tau$

Step5: joint the point G & F which intersect line BC at O.

Step6: draw a circle with O as centre and OG = OF as

radius. Step7: draw a line OE making an angle 2θ with OF

Step8: from E to draw ED perpendicular to AB

Result:

Length AD = Normal stress

Length ED = Tangential (or) shear stress

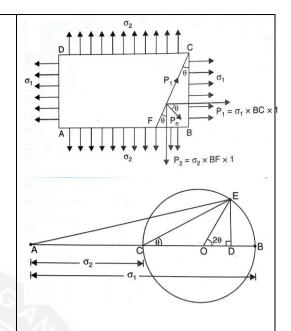
Length AE = Resultant stress

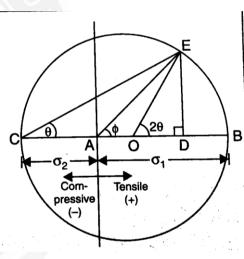
Length OG = OF = Radius of mohr's circle = Max.shear

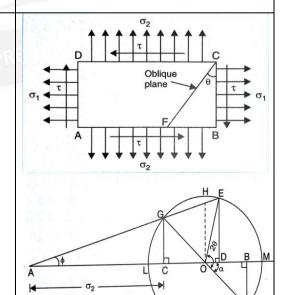
stress

Angle of obliquity = $2\emptyset = \angle EAD$

Length AM= Max. Normalstress







Length AL =Min. Normal stress

THEORETICAL QUESTIONS

TWO MARKS:

- 1. Define stress and its types
- 2. Define strain.
- 3. Define tensile stress and tensile strain.
- 4. Define the three Elastic moduli.
- 5. Define shear strain and Volumetric strain

