2.7 SCHMITT TRIGGER: [SQUARE CIRCUIT]

This circuit converts an irregular shaped waveform to a square wave or pulse. The circuit is known as Schmitt Trigger or squaring circuit. The input voltage V_{in} triggers (changes the state of) the o/p V_0 every time it exceeds certain voltage levels called the upper threshold V_{UT} and lower threshold voltage.

These threshold voltages are obtained by using the voltage divider $R_1 - R_2$, where the voltage across R_1 is feedback to the (+) input. The voltage across R_1 is variable reference threshold voltage that depends on the value of the output voltage. When $V_0 = +V_{sat}$, the voltage across R1 is called upper threshold voltage V_{UT} .Figure 2.7.1 shown below is the circuit diagram for Schmitt Trigger.

Figure 2.7.1Schmitt Trigger circuit

[source: "Linear Integrated Circuits" by D.Roy Choudhry, Shail Bala Jain, Page-237]

Figure 2.7.2 Schmitt Trigger used as Squarer

[source: "Linear Integrated Circuits" by D.Roy Choudhry, Shail Bala Jain, Page-238] Figure 2.7.2 shown above is the waveform of Schmitt Trigger as squarer. When $V_0 = +V_{sat}$, the voltage across R_1 is called upper threshold voltage V_{UT} .

$$V_{UT} = \frac{V_{ref} R_1}{R_1 + R_2} + \frac{R_2 V_{sat}}{R_1 + R_2}$$

- As long as $V_i < V_{UT}$, the output remains constant at $+V_{sat}$.
- When $V_i > V_{UT}$, the o/p regeneratively switches to $-V_{sat}$.
- When $V_0 = -V_{sat}$, the voltage across R_1 is called lower threshold voltage V_{LT} .

$$V_{LT} = \frac{V_{ref} R_1}{R_1 + R_2} - \frac{R_2 V_{sat}}{R_1 + R_2}$$

• The difference between the two threshold voltages are called hysteresis width .

$$V_{\rm H} = V_{\rm UT} - V_{\rm LT}$$

$$V_H = \frac{2R_2 V_{sat}}{R_1 + R_2}$$

• If V_{ref} is chosen as zero ,then

$$V_{\rm UT} = -V_{\rm LT} = \frac{2R_2V_{sat}}{R_1 + R_2}$$

If the threshold voltages V_{UT} and V_{LT} are made larger than the input noise voltages, the positive feedback will eliminate the false o/p transitions. Also the positive feedback, because of its regenerative action, will make V_0 switch faster between $+V_{sat}$ and $-V_{sat}$. Resistance $R_{comp}=R_1 \parallel R_2$ is used to minimize the offset problems.

The comparator with positive feedback is said to exhibit hysteresis, a dead band condition. (i.e) when the input of the comparator exceeds V_{UT} its output switches from $+V_{sat}$ to $-V_{sat}$ and reverts to its original state, $+V_{sat}$ when the input goes below V_{LT} . The hysteresis voltage is equal to the difference between V_{UT} and V_{LT} . Therefore

$$V_{\rm H} = V_{\rm UT} - V_{\rm LT}$$
.

Figure 2.7.3 b),c) shows the transfer characteristics of V_i increasing and decreasing and Figure 2.7.3 d) Composite input-output curve.

Figure 2.7.3(b,c). Transfer characteristics of Vi increasing & decreasing Figure 2.7.3 d) composite i/p –o/p curve