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2.10 DEADLOCKS 

2.10.1 System Model 

 For the purposes of deadlock discussion, a system can be modelled as a collection of 

limited resources, which can be partitioned into different categories, to be allocated to a 

number of processes, each having different needs.  

• Resource categories may include memory, printers, CPUs, open files, tape 

drives, CDROMS, etc.  

• By definition, all the resources within a category are equivalent, and a request 

of this category can be equally satisfied by any one of the resources in that category. 

If this is not the case ( i.e. if there is some difference between the resources within a 

category ), then that category needs to be further divided into separate categories. For 

example, "printers" may need to be separated into "laser printers" and "color inkjet 

printers".  

• Some categories may have a single resource.  

• In normal operation a process must request a resource before using it, and 

release it when it is done, in the following sequence:  

• Request - If the request cannot be immediately granted, then the process must 

wait until the resource(s) it needs become available. For example the system calls 

open( ), malloc( ), new( ), and request( ).  

• Use - The process uses the resource, e.g. prints to the printer or reads from the 

file.  

• Release - The process relinquishes the resource. so that it becomes available 

for other processes. For example, close( ), free( ), delete( ), and release( ).  

• For all kernel-managed resources, the kernel keeps track of what resources are 

free and which are allocated, to which process they are allocated, and a queue of 

processes waiting for this resource to become available. Application-managed 

resources can be controlled using mutexes or wait( ) and signal( ) calls, ( i.e. binary or 

counting semaphores. )  

• A set of processes is deadlocked when every process in the set is waiting for a 

resource that is currently allocated to another process in the set ( and which can only 

be released when that other waiting process makes progress. )  
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2.10.2   Deadlock Characterization 

Necessary Conditions 

 There are four conditions that are necessary to achieve deadlock:  

1. Mutual Exclusion - At least one resource must be held in a non-sharable mode; If any other 

process requests this resource, then that process must wait for the resource to be released.  

2. Hold and Wait - A process must be simultaneously holding at least one resource and waiting 

for at least one resource that is currently being held by some other process.  

3. No preemption - Once a process is holding a resource ( i.e. once its request has been 

granted ), then that resource cannot be taken away from that process until the process 

voluntarily releases it.  

4. Circular Wait - A set of processes { P0, P1, P2, . . ., PN } must exist such that every P[ i ] is 

waiting for P[ ( i + 1 ) % ( N + 1 ) ].  

 

Resource-Allocation Graph 

 In some cases deadlocks can be understood more clearly through the use of Resource-

Allocation Graphs, having the following properties:  

 A set of resource categories, { R1, R2, R3, . . ., RN }, which appear as square nodes on 

the graph. Dots inside the resource nodes indicate specific instances of the resource. ( E.g. 

two dots might represent two laser printers. )  

 A set of processes, { P1, P2, P3, . . ., PN }  

Request Edges 

  - A set of directed arcs from Pi to Rj, indicating that process Pi has requested Rj, and 

is currently waiting for that resource to become available.  

Assignment Edges  

 - A set of directed arcs from Rj to Pi indicating that resource Rj has been allocated to 

process Pi, and that Pi is currently holding resource Rj.  

 Note that a request edge can be converted into an assignment edge by reversing the 

direction of the arc when the request is granted. ( However note also that request edges point 

to the category box, whereas assignment edges emanate from a particular instance dot within 

the box. )  
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For example:  

 

 

• If a resource-allocation graph contains no cycles, then the system is not deadlocked. ( 

When looking for cycles, remember that these are directed graphs. ) See the example in Figure 

above.  

• If a resource-allocation graph does contain cycles AND each resource category 

contains only a single instance, then a deadlock exists.  

• If a resource category contains more than one instance, then the presence of a cycle 

in the resource-allocation graph indicates the possibility of a deadlock, but does not guarantee 

one. Consider, for example, Figures  below:  

 

Resource allocation graph with a deadlock 
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Resource allocation graph with a cycle but no deadlock 

 

 

2.10.3   Methods for Handling Deadlocks 

Generally there are three ways of handling deadlocks:  

1. Deadlock prevention or avoidance - Do not allow the system to get into a deadlocked state. 

2. Deadlock detection and recovery - Abort a process or preempt some resources when 

deadlocks are detected.  

3. Ignore the problem all together – If deadlocks only occur once a year or so, it may be better 

to simply let them happen and reboot as necessary than to incur the constant overhead and 

system performance penalties associated with deadlock prevention or detection. This is the 

approach that both Windows and UNIX take.  

• In order to avoid deadlocks, the system must have additional information about all 

processes. In particular, the system must know what resources a process will or may request 

in the future. (Ranging from a simple worst-case maximum to a complete resource request 

and release plan for each process, depending on the particular algorithm. )  

• Deadlock detection is fairly straightforward, but deadlock recovery requires either 

aborting processes or preempting resources, neither of which is an attractive alternative.  

• If deadlocks are neither prevented nor detected, then when a deadlock occurs the 

system will gradually slow down, as more and more processes become stuck waiting for 

resources currently held by the deadlock and by other waiting processes. Unfortunately this 

slowdown can be indistinguishable from a general system slowdown when a real-time process 

has heavy computing needs.  
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2.10.4  Deadlock Prevention 

 Deadlocks can be prevented by preventing at least one of the four required conditions:  

Mutual Exclusion 

• Shared resources such as read-only files do not lead to deadlocks.  

• Unfortunately some resources, such as printers and tape drives, require exclusive 

access by a single process.  

Hold and Wait 

• To prevent this condition processes must be prevented from holding one or more 

resources while simultaneously waiting for one or more others. There are several 

possibilities for this:  

• Require that all processes request all resources at one time. This can be wasteful of 

system resources if a process needs one resource early in its execution and doesn't need 

some other resource until much later.  

• Require that processes holding resources must release them before requesting new 

resources, and then re-acquire the released resources along with the new ones in a single 

new request. This can be a problem if a process has partially completed an operation using 

a resource and then fails to get it re-allocated after releasing it.  

• Either of the methods described above can lead to starvation if a process requires one 

or more popular resources.  

 

No Preemption 

• Preemption of process resource allocations can prevent this condition of deadlocks, 

when it is possible.  

• One approach is that if a process is forced to wait when requesting a new resource, 

then all other resources previously held by this process are implicitly released, ( preempted ), 

forcing this process to re-acquire the old resources along with the new resources in a single 

request, similar to the previous discussion.  

• Another approach is that when a resource is requested and not available, then the 

system looks to see what other processes currently have those resources and are themselves 

blocked waiting for some other resource. If such a process is found, then some of their 

resources may get preempted and added to the list of resources for which the process is 

waiting.  
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• Either of these approaches may be applicable for resources whose states are easily 

saved and restored, such as registers and memory, but are generally not applicable to other 

devices such as printers and tape drives.  

 

Circular Wait 

• One way to avoid circular wait is to number all resources, and to require that processes 

request resources only in strictly increasing ( or decreasing ) order.  

• In other words, in order to request resource Rj, a process must first release all Ri such 

that i>= j.  

• One big challenge in this scheme is determining the relative ordering of the different 

resources  

 

2.10.5  Deadlock Avoidance 

• The general idea behind deadlock avoidance is to prevent deadlocks from ever 

happening, by preventing at least one of the aforementioned conditions.  

• This requires more information about each process, AND tends to lead to low 

device utilization. ( I.e. it is a conservative approach. )  

• In some algorithms the scheduler only needs to know the maximum number 

of each resource that a process might potentially use. In more complex algorithms the 

scheduler can also take advantage of the schedule of exactly what resources may be needed 

in what order.  

• When a scheduler sees that starting a process or granting resource requests 

may lead to future deadlocks, then that process is just not started or the request is not 

granted.  

• A resource allocation state is defined by the number of available and allocated 

resources, and the maximum requirements of all processes in the system.  

 

Safe State 

A state is safe if the system can allocate all resources requested by all processes 

( up to their stated maximums ) without entering a deadlock state.  

More formally, a state is safe if there exists a safe sequence of processes { P0, 

P1, P2, ..., PN } such that all of the resource requests for Pi can be granted using the 
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resources currently allocated to Pi and all processes Pj where j <i. ( I.e. if all the processes 

prior to Pi finish and free up their resources, then Pi will be able to finish also, using the 

resources that they have freed up. )  

• If a safe sequence does not exist, then the system is in an unsafe state, which 

may lead to deadlock. ( All safe states are deadlock free, but not all unsafe states lead to 

deadlocks. )  

 

Safe, unsafe, and deadlocked state spaces. 

For example, consider a system with 12 tape drives, allocated as follows. Is this a safe state? 

What is the safe sequence?  

 

• What happens to the above table if process P2 requests and is granted one more tape 

drive?  

• Key to the safe state approach is that when a request is made for resources, the 

request is granted only if the resulting allocation state is a safe one.  

 

Resource-Allocation Graph Algorithm 

 If resource categories have only single instances of their resources, then deadlock 

states can be detected by cycles in the resource-allocation graphs.  

•  

•  

Maximum Needs  Current Allocation  

P0  10  5  

P1  4  2  

P2  9  2  
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• In this case, unsafe states can be recognized and avoided by augmenting the resource-

allocation graph with claim edges, noted by dashed lines, which point from a process to a 

resource that it may request in the future.  

• In order for this technique to work, all claim edges must be added to the graph for any 

particular process before that process is allowed to request any resources. ( Alternatively, 

processes may only make requests for resources for which they have already established claim 

edges, and claim edges cannot be added to any process that is currently holding resources. )  

• When a process makes a request, the claim edge Pi->Rj is converted to a request edge. 

Similarly when a resource is released, the assignment reverts back to a claim edge.  

• This approach works by denying requests that would produce cycles in the resource-

allocation graph, taking claim edges into effect.  

• Consider for example what happens when process P2 requests resource R2:  

 

Resource allocation graph for deadlock avoidance 

The resulting resource-allocation graph would have a cycle in it, and so the request cannot be 

granted.  

 

 

 An unsafe state in a resource allocation graph  
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Banker's Algorithm 

 For resource categories that contain more than one instance the resourceallocation 

graph method does not work, and more complex ( and less efficient ) methods must be 

chosen.  

• The Banker's Algorithm gets its name because it is a method that bankers could use to 

assure that when they lend out resources they will still be able to satisfy all their clients. ( A 

banker won't loan out a little money to start building a house unless they are assured that 

they will later be able to loan out the rest of the money to finish the house. )  

• When a process starts up, it must state in advance the maximum allocation of 

resources it may request, up to the amount available on the system.  

• When a request is made, the scheduler determines whether granting the request 

would leave the system in a safe state. If not, then the process must wait until the request can 

be granted safely.  

• The banker's algorithm relies on several key data structures: ( where n is the number 

of processes and m is the number of resource categories. )  

 Available[ m ] indicates how many resources are currently available of each type.  

 Max[ n ][ m ] indicates the maximum demand of each process of each  

resource.  

 Allocation[ n ][ m ] indicates the number of each resource category allocated to each 

process.  

 Need[ n ][ m ] indicates the remaining resources needed of each type for each process. 

( Note that Need[ i ][ j ] = Max[ i ][ j ] - Allocation[ i ][ j ] for all i, j. )  

 

Safety Algorithm 

 In order to apply the Banker's algorithm, we first need an algorithm for determining 

whether or not a particular state is safe.  

 This algorithm determines if the current state of a system is safe, according to the 

following steps:  

1. Let Work and Finish be vectors of length m and n respectively.  

2. Work is a working copy of the available resources, which will be modified during the 

analysis.  
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3. Finish is a vector of boolean indicating whether a particular process can finish. ( or has 

finished so far in the analysis. )  

4. Initialize Work to Available, and Finish to false for all elements.  

5. Find an i such that both (A) Finish[ i ] == false, and (B) Need[ i ] < Work. This process has 

not finished, but could with the given available working set. If no such i exists, go to step 4.  

6. Set Work = Work + Allocation[ i ], and set Finish[ i ] to true. This corresponds to process i 

finishing up and releasing its resources back into the work pool. Then loop back to step 2.  

7. If finish[ i ] == true for all i, then the state is a safe state, because a safe sequence has been 

found.  

 

Resource-Request Algorithm ( The Bankers Algorithm  ) 

 Now that we have a tool for determining if a particular state is safe or not, we are now 

ready to look at the Banker's algorithm itself.  

 This algorithm determines if a new request is safe, and grants it only if it is safe to do 

so.  

 When a request is made ( that does not exceed currently available resources ), pretend 

it has been granted, and then see if the resulting state is a safe one. If so, grant the request, 

and if not, deny the request, as follows:  

1. Let Request[ n ][ m ] indicate the number of resources of each type currently requested by 

processes. If Request[ i ] > Need[ i ] for any process i, raise an error condition.  

3. If Request[ i ] > Available for any process i, then that process  

must wait for resources to become available. Otherwise the process can continue to step 3.  

 Check to see if the request can be granted safely, by pretending it has been granted 

and then seeing if the resulting state is safe. If so, grant the request, and if not, then the 

process must wait until its request can be granted safely.The procedure for granting a request 

( or pretending to for testing purposes ) is:  

 Available = Available - Request  

 Allocation = Allocation + Request  

 Need = Need - Request  

 2.10.6 Deadlock Detection 

• If deadlocks are not avoided, then another approach is to detect when they 

have occurred and recover somehow.  
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• In addition to the performance hit of constantly checking for deadlocks, a 

policy / algorithm must be in place for recovering from deadlocks, and there is 

potential for lost work when processes must be aborted or have their resources 

preempted.  

Single Instance of Each Resource Type 

 If each resource category has a single instance, then we can use a variation of the 

resource-allocation graph known as a wait-for graph.  

 A wait-for graph can be constructed from a resource-allocation graph by eliminating 

the resources and collapsing the associated edges, as shown in the figure below.  

 An arc from Pi to Pj in a wait-for graph indicates that process Pi is waiting for a resource 

that process Pj is currently holding.  

 

 (a) Resource allocation graph.   (b) Corresponding wait-for graph 

As before, cycles in the wait-for graph indicate deadlocks.  

This algorithm must maintain the wait-for graph, and periodically search it for 

cycles.  

Several Instances of a Resource Type 

The detection algorithm outlined here is essentially the same as the 

Banker's algorithm, with two subtle differences:  

In step 1, the Banker's Algorithm sets Finish[ i ] to false for all i. The 

algorithm presented here sets Finish[ i ] to false only if Allocation[ i ] is not zero. If the currently 

allocated resources for this process are zero, the algorithm sets Finish[ i ] to true. This is 

essentially assuming that IF all of the other processes can finish, then this process can finish 
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also. Furthermore, this algorithm is specifically looking for which processes are involved in a 

deadlock situation, and a process that does not have any resources allocated cannot be 

involved in a deadlock, and so can be removed from any further consideration.  

Steps 2 and 3 are unchanged  

In step 4, the basic Banker's Algorithm says that if Finish[ i ] == true for all 

i, that there is no deadlock. This algorithm is more specific, by stating that if Finish[ i ] == false 

for any process Pi, then that process is specifically involved in the deadlock which has been 

detected.  

 

2.10.7 Recovery From Deadlock  

• There are three basic approaches to recovery from deadlock:  

• Inform the system operator, and allow him/her to take manual intervention. • 

Terminate one or more processes involved in the deadlock  

• Preempt resources.  

Process Termination 

 Two basic approaches, both of which recover resources allocated to terminated 

processes:  

• Terminate all processes involved in the deadlock. This definitely solves the deadlock, 

but at the expense of terminating more processes than would be absolutely necessary.  

• Terminate processes one by one until the deadlock is broken. This is more 

conservative, but requires doing deadlock detection after each step.  

In the latter case there are many factors that can go into deciding which processes to 

terminate next:  

 Process priorities.  

 How long the process has been running, and how close it is to finishing.  

 How many and what type of resources is the process holding. ( Are they easy to 

preempt and restore? )  

 How many more resources does the process need to complete. • How many 

processes will need to be terminated  

 Whether the process is interactive or batch.  

 ( Whether or not the process has made non-restorable changes to any resource. )  
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Resource Preemption 

 When preempting resources to relieve deadlock, there are three important issues to 

be addressed:  

1. Selecting a victim - Deciding which resources to preempt from which processes 

involves many of the same decision criteria outlined above.  

2. Rollback - Ideally one would like to roll back a preempted process to a safe state prior 

to the point at which that resource was originally allocated to the process. Unfortunately it 

can be difficult or impossible to determine what such a safe state is, and so the only safe 

rollback is to roll back all the way back to the beginning. ( I.e. abort the process and make it 

start over. )  

Starvation - How do you guarantee that a process won't starve because its resources are 

constantly being preempted? One option would be to use a priority system, and increase the 

priority of a process every time its resources get preempted. Eventually it should get a high 

enough priority that it won't get pre-empt. 


