
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

 RUN-TIME STORAGE MANAGEMENT

• Information needed during an execution of a procedure is kept in a block of storage
called an activation record, which includes storage for names local to the procedure. The
two standard storage allocation strategies are:

1. Static allocation 2. Stack allocation

• In static allocation, the position of an activation record in memory is fixed at compile time.
• In stack allocation, a new activation record is pushed onto the stack for each
execution of a procedure. The record is popped when the activation ends.

• The following three-address statements are associated with the run-time allocation
and de allocation of activation records:

1. Call,
2. Return,
3. Halt, and
4. Action, a placeholder for other statements.

• We assume that the run-time memory is divided into areas for:

1. Code
2. Static data
3. Stack

Static allocation

 In this allocation scheme, the compilation data is bound to a fixed location in the memory and it
does not change when the program executes.

 As the memory requirement and storage locations are known in advance, runtime support
package for memory allocation and de-allocation is not required.

 In a static storage-allocation strategy, it is necessary to be able to decide at compile time exactly
where each data object will reside at run time. In order to make such a decision, at least two
criteria must be met:

1. The size of each object must be known at compile time.
2. Only one occurrence of each object is allowable at a given moment during program

execution.
 Because of the first criterion, variable-length strings are disallowed, since their length cannot be

established at compile time. Similarly dynamic arrays are disallowed, since their bounds are not
known at compile time and hence the size of the data object is unknown.

 Because of the second criterion, nested procedures are not possible in a static storage-allocation
scheme. This is the case because it is not known at compile time which or how many nested
procedures, and hence their local variables, will be active at execution time.

Implementation of call statement:

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

The codes needed to implement static allocation are
as follows: MOV #here + 20, callee.static_area /*It
saves return address*/
GOTO callee.code_area /*It transfers control to the target
code for the called procedure */
where,

callee.static_area - Address of the activation record
callee.code_area - Address of the first instruction for called procedure
#here + 20 - Literal return address which is the address of the
instruction following GOTO.

Implementation of return statement:

A return from procedure callee is
implemented by : GOTO
*callee.static_area

This transfers control to the address saved at the beginning of the activation record.

Implementation of action statement:
The instruction ACTION is used to implement action statement.

Implementation of halt statement:

The statement HALT is the final instruction that returns control to the operating system.

Dynamic Allocation

 The allocation can be varied during the execution
 It makes the use of recursive function.
 In a dynamic storage-allocation strategy, the data area requirements for a program are not

known entirely at compilation time.
 In particular, the two criteria that were given in the previous section as necessary for static

storage allocation do not apply for a dynamic storage-allocation scheme.
 The size and number of each object need not be known at compile time; however, they must be

known at run time when a block is entered.
 Similarly more than one occurrence of a data object is allowed, provided that each new

occurrence is initiated at run time when a block is entered.

Stack Allocation

 Procedure calls and their activations are managed by means of stack memory allocation.
 It works in last-in-first-out (LIFO) method and this allocation strategy is very useful for recursive

procedure calls.

Static allocation can become stack allocation by using relative addresses for
storage in activation records. In stack allocation, the position of activation record is
stored in register so words in activation records can be accessed as offsets from the
value in this register.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

The codes needed to implement stack allocation are as follows:

Initialization of stack:

MOV #stackstart , SP /*
initializes stack */ Code for
the first procedure
HALT /* terminate execution */

Implementation of Call statement:

ADD #caller.recordsize, SP /*
increment stack pointer */ MOV #here + 16,
*SP/*Save return address */
GOTO
callee.c
ode_ar
ea
where,
caller.recordsize - size of the activation record
#here + 16 - address of the instruction following the GOTO

Implementation of Return statement:

GOTO *0 (SP) /*return to the caller */
SUB #caller.recordsize, SP /* decrement SP and restore to previous value */

Runtime environment manages runtime memory requirements for the following entities:

 Code: It is known as the text part of a program that does not change at runtime. Its memory
requirements are known at the compile time.

 Procedures: Their text part is static but they are called in a random manner. That is why, stack
storage is used to manage procedure calls and activations.

 Variables: Variables are known at the runtime only, unless they are global or constant. Heap
memory allocation scheme is used for managing allocation and de-allocation of memory for
variables in runtime.

Heap Allocation

 Variables local to a procedure are allocated and de-allocated only at runtime.
 Heap allocation is used to dynamically allocate memory to the variables and claim it back when

the variables are no more required.
 Except statically allocated memory area, both stack and heap memory can grow and shrink

dynamically and unexpectedly.
 Therefore, they cannot be provided with a fixed amount of memory in the system.

 As shown in the image above, the text part of the code is allocated a fixed
 Stack and heap memory are arranged at the extremes of total memory allocated to the

program. Both shrink and grow against each other.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

As shown in the image above, the text part of the code is allocated a fixed amount of memory.
Stack and heap memory are arranged at the extremes of total memory allocated to the
program. Both shrink and grow against each other.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CS8602 COMPILER DESIGN

amount of memory.
Stack and heap memory are arranged at the extremes of total memory allocated to the

