5.8 Computer program: Design of Stator main dimensions

Problem:

Calculate diameter of core, length, size and number of conductors for a $15000 \mathrm{kVA} ; 50 \mathrm{~Hz}$; $11 \mathrm{kV} ; 2$ - Pole star connected salient pole cylindrical rotor alternator with armature winding having 600 phase spread. Assume :
avg. magnetic flux $\mathrm{Bav}=.55 \mathrm{~Wb} / \mathrm{m} 2$
electrical loading ac $=36,000 \mathrm{amp} / \mathrm{m}$
current density $\mathrm{J}=5 \mathrm{amp} / \mathrm{mm} 2$
peripheral speed $\mathrm{Va}=160 \mathrm{~m} / \mathrm{sec}$
windings should be arranged to eliminate 5th harmonic.
Synchronous speed Ns $=50$ r.p.s

Solution:

Given $\mathrm{Ns}=50$ r.p.s and $\mathrm{P}=2$ poles
Peripheral speed $\mathrm{Va}=160 \mathrm{~m} / \mathrm{sec}$
$\mathrm{Va}=\mathrm{pi} * \mathrm{D} * \mathrm{Ns}$
Therefore $\mathrm{D}=\mathrm{Va} /\left(\mathrm{pi}{ }^{*} \mathrm{Ns}\right)=160 /(3.14 * 50)=1 \mathrm{~m}$
Now Distribution factor for 60 o phase spread in order to eliminate 5th harmonic
$\mathrm{Kd}=.955$
$\cos (5 \alpha / 2)=0$
giving $5 \alpha / 2=90$
giving $\alpha=360$
Pitch factor $\mathrm{Kp}=\cos (\alpha / 2)=.951$
Now Kw $=\mathrm{Kp} * \mathrm{Kd}=.951$ *. $955=.8595$
Now $\mathrm{Co}=1.11 \mathrm{pi2} * \mathrm{f} * \mathrm{Bav} * \mathrm{ac} * \mathrm{Kw}=1.11 * 3.142 * 50 * .55 * 36000 * .8595=186.248$
$\mathrm{D} 2 \mathrm{~L}=\mathrm{P} /\left(\mathrm{Co}^{* N s}\right)$
$\mathrm{L}=15000 /(186.248 * 50 * 12)=1.6 \mathrm{~m}$

Flux $\Phi=\mathrm{pi}^{*} \mathrm{D}^{*} \mathrm{~L} * \mathrm{Bav}=3.14 * 1 * 1.6^{*} .55=2.76 \mathrm{~Wb}$
Φ pole $=\Phi /$ pole $=1.38 \mathrm{~Wb} /$ pole
$\mathrm{Tph}=\mathrm{Eph} /\left(4.44 * \mathrm{f}^{*} \mathrm{Kw} *\right.$ Фpole $)=(11000 / \sqrt{ } 3) /(4.44 * 50 * .8595 * 1.38)=24$
Total conductors $\mathrm{Z}=6 * \mathrm{Tph}=144=\mathrm{Ss}$
Conductor per slot $=\mathrm{Z} /(2 *$ Poles $)=144 / 4=36$

Program:

function calculate_D_L_size_number_alternator_cylindrical_rotor \%given
$\mathrm{Bav}=.55 ;$
$\mathrm{ac}=36000 ;$
$\mathrm{J}=5 ;$
$\mathrm{Va}=160 ;$
$\mathrm{Ns}=50$;
pole $=2$;
$\mathrm{Q}=15000$;
$\mathrm{f}=50$;

Eline $=11000$;
\%therfore D
$\mathrm{D}=\mathrm{Va} /\left(\mathrm{pi}^{*} \mathrm{Ns}\right) ;$
$\%$
\%Now distribution factor for 60 degree phase spread in
\%order to eliminate 5th harmonic
$\%$ -
$K d=.955 ;$
alpha $=(2 * \operatorname{acosd}(0)) / 5 ;$
$\%$ Why as $\cos (5 *$ alpha $/ 2)=0$ for 5 th harmonic
fprintf(' $\backslash n$ Program to calculate D, L size and numer of conductors of Synch machine');
fprintf(' $\backslash n \longrightarrow$ -);
fprintf('\nFor 5th harmonic elimination we have alpha $=$ ');
disp(alpha);
fprintf('\nUsing alpha we also get.....');
\% pitch factor Kp
$\mathrm{Kp}=\operatorname{cosd}(\mathrm{alph} \mathrm{a} / 2) ;$
fprintf(' $\backslash n P$ itch factor $K p=')$;
$\operatorname{disp}(\mathrm{Kp})$;
\% giving Kw
fprintf(' \backslash nStacking Factor $K w=')$;
$\mathrm{Kw}=\mathrm{Kp} * \mathrm{Kd} ;$
$\operatorname{disp}(\mathrm{Kw})$;
\% using Kw we get output coeffecient

Co $=1.11 * \mathrm{pi}^{*}{ }^{\mathrm{p} i}{ }^{*} \mathrm{f} * \mathrm{Bav}^{*} \mathrm{ac}^{*} \mathrm{Kw}^{*} .001$
fprintf(' \backslash nWe have Diameter $D=`$;
$\operatorname{disp}(D)$;
fprintf('\nLength $L=$ ');
$\mathrm{L}=(\mathrm{Q}) /\left(\mathrm{Co} * \mathrm{Ns}^{*} \mathrm{D} * \mathrm{D}\right) ;$
$\operatorname{disp}(\mathrm{L})$;
\%Now flux phi
$\mathrm{phi}=\mathrm{pi}^{*} \mathrm{D}^{*} \mathrm{~L}^{*}$ Bav;
fprintf('\nWe got Flux phi = ');
$\operatorname{disp}(\mathrm{phi}) ;$
phipole $=$ phi/pole;
\%Turn per phase
Eph $=$ Eline/sqrt(3);
$\mathrm{Tph}=\mathrm{Eph} /\left(4.44 * \mathrm{f} * \mathrm{Kw}^{*}\right.$ phipole $) ;$
fprintf(' $\backslash n$ Turns per phase $\mathrm{Tph}=$ ');
$\operatorname{disp}(\mathrm{Tph}) ;$
\%total conductors Z
$\mathrm{Z}=6 * \mathrm{Tph} ;$
fprintf(' $\backslash n$ Total conductors $\mathrm{Z}=$ ' $)$;
$\operatorname{disp}(Z) ;$
\%copnductors per slot
Ss $=\mathrm{Z} /\left(2^{*}\right.$ pole $)$;
fprintf('\nConductors per slot $=$ ');
$\operatorname{disp}(S s) ;$
end

Output:

For 5th harmonic elimination we have alpha $=36$
Using alpha we also get.....
Pitch factor $\mathrm{Kp}=0.9511$
Stacking Factor $K w=0.9083$
$\mathrm{Co}=$
$9.8507 \mathrm{e}+003$

We have Diameter $\mathrm{D}=1.0186$

Length $\mathrm{L}=0.0294$
We got Flux phi $=0.0517$
Turns per phase $\mathrm{Tph}=1.2194 \mathrm{e}+003$

Total conductors $\mathrm{Z}=7.3162 \mathrm{e}+003$
Conductors per slot $=1.8290 \mathrm{e}+003$

