UNIT-1V FORCED VIBRATION

4.1 INTRODUCTION:

When a system is subjected continuously to time varying disturbances, the
vibrations resulting under the presence of the external disturbance are referred to as
vibrations.

Forced vibration is when an alternating force or motion is applied to a
mechanical system. Examples of this type of vibration include a shaking washing machine
due to an imbalance, transportation vibration (caused by truck engine, springs, road, etc), or
the vibration of a building during an earthquake. In forced vibration the frequency of the
vibration is the frequency of the force or motion applied, with order of magnitude being
dependent on the actual mechanical system.

When a vehicle moves on a rough road, it is continuously subjected to road
undulations causing the system to vibrate (pitch, bounce, roll etc). Thus the automobile is said
to undergo forced vibrations. Similarly whenever the engine is turned on, there is a resultant
residual unbalance force that is transmitted to the chassis of the vehicle through the engine
mounts, causing again forced vibrations of the vehicle on its chassis. A building when
subjected to time varying ground motion (earthquake) or wind loads, undergoes forced
vibrations. Thus most of the practical examples of vibrations are indeed forced vibrations.

4.2 CAUSES RESONANCE:
Resonance is simple to understand if you view the spring and mass as energy storage

elements - with the mass storing kinetic energy and the spring storing potential energy. As
discussed earlier, when the mass and spring have no force acting on them they transfer energy
back and forth at a rate equal to the natural frequency. In other words, if energy is to be
cfficiently pumped into both the mass and spring the encrgy source nceds to feed the cnergy
in at a ratc cqual to the natural frequency. Applying a force to the mass and spring is similar
to pushing a child on swing, you need to push at the correct moment if you want the swing to
get higher and higher. As in the case of the swing, the force applied does not necessarily have
to be high to get large motions; the pushes just need to keep adding cnergy into the system.

The damper, instead of storing energy, dissipates energy. Since the damping force
1s proportional to the velocity, the more the motion, the more the damper dissipates the energy.
Therefore a point will come when the energy dissipated by the damper will equal the energy
being fed in by the force. At this point, the system has reached its maximum amplitude and
will continuge to vibratc at this Icvel as long as the force applicd stays the same. If no damping
cxists, there 1s nothing to dissipatc the cnergy and thercfore theorctically the motion will
continue to grow on into infinity.

forced



4.3 FORCED VIBRATION OF A SINGLE DEGREE-OF-FREEDOM SYSTEM:

We saw that when a system is given an initial input of energy, either in the form
of an initial displacement or an initial velocity, and then released it will, under the right
conditions, vibrate freely. If there is damping in the system, then the oscillations die away. If
a system is given a continuous input of energy in the form of a continuously applied force or
a continuously applied displacement, then the consequent vibration is called forced vibration.
The energy input can overcome that dissipated by damping mechanisms and the oscillations
are sustained.

We will consider two types of forced vibration. The first is where the ground to
which the system is attached is itself undergoing a periodic displacement, such as the vibration
of a building i an earthquake. The second is where a periodic force is applied to the mass, or
object performing the motion; an example might be the forces exerted on the body of a car by
the forces produced in the engine. The simplest form of periodic force or displacement is
sinusoidal, so we will begin by considering forced vibration due to sinusoidal motion of the
ground. In all real systems, energy will be dissipated, 1.e. the system will be damped, but often
the damping is very small. So let us first analyze systems in which there is no damping.

4.4 STEADY STATE RESPONSE DUE TO HARMONIC OSCILLATION:

Consider a spring-mass-damper system as shown in figure 4.1. The equation of
motion of this system subjected to a harmonic force & SIN@L can be given by

mx +ix +cx = Fsin of 4.1)

where, m , k and ¢ are the mass, spring stiffness and damping coefficient of the system, F is the
amplitude of the force, w is the excitation frequency or driving frequency.
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Figure 4.1 Harmonically excited system



Reference line

Figure 4.2: Force polygon

The steady state response of the system can be determined by solving equation(4.1) in many
different ways. Here a simpler graphical method is used which will give physical
understanding to this dynamic problem. From solution of differential equations it is known
that the steady state solution (particular integral) will be of the form

X= XSiI’l(@f* gé) (42)

As each term of equation (4.1) represents a forcing term viz., first, second and third terms,
represent the inertia force, spring force, and the damping forces. The term in the right hand
side of equation (4.1) is the applied force. One may draw a close polygon as shown in figure
4.2 considering the equilibrium of the system under the action of these forces. Considering a
reference line these forces can be presented as follows.

Spring force = kx = kX sin(@t — ¢) (This force will make an angle ot=9 with the reference
line, represented by line OA).

Damping force = €% = ¢@4 cos(@t - ¢) (This force will be perpendicular to the spring
force, represented by line AB).

& 2 : _
Inertia force = %= 7@ £ sin(et - ) (this force is perpendicular to the damping force

and is in opposite direction with the spring force and is represented by line BC) .

- Applicd force = £ SIN@L which can be drawn at an angle @ with respect to the reference
linc and is represented by line OC.

From cquation (1), the resultant of the spring force, damping force and the incrtia force will be the
applicd force, which is clcarly shown in figure 4.2,

It may be noted that till now, we don't know about the magnitudc of X and ¢ which can be casily computed
from
Figure 2. Drawing a line CD parallel to AB, from the triangle OCD of Figure 2,
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As the ratio X is the static deflection [X°) of the spring, F Xy s known
as the magnification factor or amplitude ratio of the system
4.5 FORCED VIBRATION WITH DAMPING:



In this section we will see the behaviour of the spring mass damper model when we add
a harmonic force in the form below. A force of this type could, for cxample, be gencrated by a

rotating imbalance.

F = Fycos (27 ft),

If we again sum the forces on the mass we get the following ordinary differential equation:

ma + ct + kx = Fycos (2 ft).

The steady state solution of this problem can be written as:
z(t) = X cos (27 ft — ¢).
The result states that the mass will oscillate at the same frequency, f, of the applied force, but

with a phase shift .

The amplitude of the vibration —X|| is defined by the following formula.

X — ﬂ 1
k \/(1 —72)2 4 (2(;7.)2'

Where —r|| is defined as the ratio of the harmonic force frequency over the
undamped

natural frequency of the mass-spring-damper model.
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The phase shift , &, is defined by the following formula.

) rctan QCT
= arcta ;
@ 1—72

Ampliwde

The plot of these functions, called "the frequency response of the system", presents one of the most
important features in forced vibration. In a lightly damped system when the forcing frequency
nears the natural frequency (" =2 1) the amplitude of the vibration can get extremely high. This

phenomenon is called resonance (subsequently the natural frequency of a system is often referred



to as the resonant frequency). In rotor bearing systems any rotational speed that excites a resonant

frequency is referred to as a critical speed.

If resonance occurs in a mechanical system 1t can be very harmful - leading to

eventual failure of the system. Consequently, one of the major reasons for vibration analysis is to
predict when this type of resonance may occur and then to determine what steps to take to prevent
it from occurring. As the amplitude plot shows, adding damping can significantly reduce the
magnitude of the vibration. Also, the magnitude can be reduced if the natural frequency can be
shifted away from the forcing frequency by changing the stiffness or mass of the system. If the
system cannot be changed, perhaps the forcing frequency can be shifted (for example, changing

the speed of the machine generating the force).

The following are some other points in regards to the forced vibration shown in the frequency response

plots.

At a given frequency ratio, the amplitude of the vibration, X, is directly proportional to the
amplitude of the force £y (e.g. 1f you double the force, the vibration doubles)

With little or no damping, the vibration is in phase with the forcing frequency when the frequency ratio r <

1 and 180 degrees out of phase when the frequency ratio r > 1

When r « | the amplitude is just the deflection of the spring under the static force Fy. This

deflection is called the static deflection &s,. Hence, when r « 1 the effects of the damper and the
mass arc minimal.

When # > | the amplitude of the vibration is actually less than the static deflection 8. In
this region the force generated by the mass (F = ma) is dominating because the acceleration seen
by the mass increases with the frequency. Since the deflection seen in the spring, X, is reduced in

this region, the force transmitted by the spring (F = &x) to the basc is reduced. Thercfore the mass-

spring-damper system is isolating the harmonic force from the mounting base - referred to as
vibration isolation. Interestingly, more damping actually reduces the effects of vibration isolation
when » >> | because the damping force (F = ¢v) is also transmitted to the base.

4.6 ROTATING UNBALANCE FORCED VIBRATION:

One may find many rotating systems in industrial applications. The unbalanced
force in such a system can be represented by a mass m with eccentricity e , which is rotating with angular
velocity as shown in Figure 4.1.



Figure 4.1 : Vibrating system with rotating unbalance
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Figure 4.2. Freebody diagram of the system

Let x be the displacement of the nonrotating mass (M-m) from the static equilibrium position,
then the displacement of the rotating mass m is X+ @ s1n @f

From the freebody diagram of the system shown in figure 4.2, the equation of motion is
2
(M —m)i+m-a——2-(x+esin @) tkx+cx=0
i

(4.1)

or Mitkx+ex = me@” sin @f (4.2)

2
This cquation is samc as cquation (1) where £ is replaced by €@ | So from the forec polygon as
shown in figurc 4.3



mea® = \,‘{(—Mm’ +k)? +co’} X

(4.3)
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Figure 4.3: Force polygon
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So the complete solution becomes
2
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4.7 VIBRATION ISOLATION AND TRANSMISSIBILITY:

When a machine 1s operating, it is subjected to several time varying forces because of which it



tends to exhibit vibrations. In the process, some of these forces are transmitted to the foundation - which could
undermine the life of the foundation and also affect the operation of any other machine on the same foundation.
Hence it is of interest to minimize this force transmission. Similarly when a system is subjected to ground
motion, part of the ground motion is transmitted to the system as we just discussed e.g., an automobile going
on an uncven road; an instrument mounted on the vibrating surface of an aircraft ctc. In these cases, we wish
to minimize the motion transmitted from the ground to the system. Such considerations are used in the design
of machine foundations and in order to understand some of the basic issues involved, we will study this problem
based on the single d.o.f model discussed so far. we get the expression for force transmitted to the base as
follows:

= \frm‘a}"’ +(erax, )

T
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4.7.1 Vibration lsolators:

Consider a vibrating machine; bolted to a rigid floor (Figure 2a).The force transmitted to the
floor is equal to the force generated in the machine. The transmitted force can be decreased by
adding a suspension and damping elements (often called vibration isolators) Figure 2b , or by
adding what is called an inertia block, a large mass (usually a block of cast concrete), directly
attached to the machine (Figure 2¢).Another option is to add an additional level of mass (sometimes
called a seismic mass, againa block ofcast concrete) and suspension(Figure2d).
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Figurc 2.Vibration isolation systcms: a) Machinc bolted to a rigid foundation

b) Supported on isolation springs, rigid foundation ¢) machine attached to an inertial block. d)
Supported on isolation springs, non-rigid foundation (such as a floor); or machine on isolation
springs, seismic mass and second level of isolator springs

When oscillatory forces arise unavoidably in machines it is usually desired to



prevent these forces from being transmitted to the surroundings. For example, some unbalanced
forces arc incvitable in a car engine, and it is uncomfortable if these arc wholly transmitted to the
car body. The usual solution is to mount the source of vibration on sprung supports. Vibration
isolation is measured in terms of the motion or force transmitted to the foundation. The lesser the
force or motion transmitted the greater the vibration isolation

Suppose that the foundation is effectively rigid and that only one direction of
movement is cffectively excited so that the system can be treated as having only one degree of freedom.

4.8 RESPONSE WITHOUT DAMPING:

The amplitude of the force transmitted to the foundations is Where & is the Stiffness
of the support and x(#) is the displacement of the mass .
The governing equation can be determined by considering that the total forcing on the machine is equal
to its mass multiplied by itsacceleration(Newton’s second law)



The ratio (transmitted force amplitude) / (applied force amplitude) is called the
transmissibility.
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Transmissibility = ‘
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The transmissibility can never be zero but will be less than 1 providing “— >V2 or
“n

:- > vZ otherwise it will be greater than1.

n

4.9 SOLVED PROBLEMS
1. Derive the relation for the displacement of mass from the equilibrium position of
the damped vibration system with harmonic forcing.
Consider a system consisting of spring, mass and damper as shown in Fig. 23.19.
Let the system is acted upon by an external periodic (7.e. simple harmonic) disturbing force,

F.OFcosw .t
where F = Static force, and
w = Angular velocity of the periodic disturbing force.
When the system is constrained to move in vertical guides, it has only one degree of
freedom. Let at sometime £, the mass is displaced downwards through a distance x from its
mean position.

P LT T LT T L LTE SIS

The cquation of motion may be written as,
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This equation of motion may be solved either by differential equation method or by
graphi-cal method as discussed below :

1. Differential equation method
The cquation (f) is a differential cquation of the sccond degree whose right hand sidc is
some function in z. The solution of such type of differential equation consists of two parts ; one
part is the complementary function and the second is particular integral. Therefore the solution
may be written as
X=x1tx2
where x| = Complementary function, and x; = Particular integral.

The complementary function is same as discussed in the previous article, 7.e.



x1 0 Ce-“cos (W 4f—0) ... (i) where C and O arc constants, Let

us now find the value of particular integral as discussed below : Let
the particular integral of equation (#) is given by
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In actual practice, the value of the complementary function ., at any time ¢ is much smaller
as compared to paticilar integral v, Therefore. th= dé:splacement v, at any time ¢, s given hy the
vartcular integral x, only.,
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2. A mass of 10 kg is suspended from one end of a helical spring, the other end being
fixed. The stiffness of the spring is 10 N/mm. The viscous damping causes the
amplitude to decrease to one-tenth of the initial value in four complete oscillations. If a
periodic force of 150 cos 50 t N is applied at the mass in the vertical direction, find the
amplitude of the forced vibrations. What is its value of resonance ?

i

Solution, Given . m— l0kg; &= 10 N'mm — 10 > 10* N/m ; ¥-= lﬁ

Since the periodic force I, — ['cos«@e —130cos50¢ . therefore
Stzzic foree, F=130N
and angular velocity of the periodic distusbing force.
=t radss
We know that angular spced or natural circular frequency of free vibrations,

i rs__ lelO3 - 316 rads
. "Jm ‘f 10 - ’

Amplitude of the foiced vibrations

Since the amplitude dzcreases to 1/10th of tre initial value in four complete oscillations,
therefore, the rauv of inttial amplitade (x ) 0 the Goal anplitude JCer four comnplete oscilluiuns
{x;] is given by
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We know that amplitude of the forcad vibrations,
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0.015 0.015

l o2 00834225
s770%60° [ (50 f i
\j (10x10%)° 316 |

Squaring 2oth s.d=s and rearranging,
308324 =332 or a =833 o a=2387
We know that a—-c2m o c—ax2m- 2887 x2x 10— 57.74 N/nvs
and deflection nt the system praduced by the stare force /7,
x,= Fls=150/10 < 10° = 0.015 m

3. The mass of an electric motor is 120 kg and it runs at 1500 r.p.m. The armature mass
is 35 kg and its C.G. lies 0.5 mm from the axis of rotation. The motor is mounted on
five springs of negligible damping so that the force transmitted is one-eleventh of the
impressed force. Assume that the mass of the motor is equally distributed among the

five springs.

Determine : 1. stiffness of each spring; 2. dynamic force transmitted to the ba se at the

operating speed; and 3. natural frequency of the system.
Sulmtion. Givin m = 1200 kg m, = $a kg, r=05mn=hx 1l ‘weo e =1/071

N - 1000 np.m. or ©— 25 = 1300/ 60 - 157.1 rad/s .

L. Suifuess af eacli spring

Let s — Combinec stiffness of the sgring in N-m, and
o, = Natural circular frequency of vibration of the machine in
rac/s.
(0TS

—YBX10™° m=9.8 mm Ans.

1.33
Amplinede of Farced vibratwns at resenance

We know that amplitude of forced vibrazons at resonance,

x—— (.4 _10at? 00827 822
Xiraee — X ¢ o LA B = : =4} ¥ 7 m=282.2mm :
. C, 57.54%31 6 i mm Ans

We know thal trunsmissibilily raliv (g).

1 1 o) (0,)
T 1 @ —(m,)¢ (57 1°—(m,)°

MET w2 ¥ 2 2 y '
ot AST.)° —(m,)° =11(m,)° o (w,)° =2057 or ;=483 ruds



4. What do vou understand by transmissibility? Describe the method of finding the
transmissibility ratio from unbalanced machine supported with foundation.

2. Dynamic torce uransmitted o the basc at the operating speed (Le. 1500 rpam. or 1571 rad/s)

AL, 1 i
Ve We know diat maxisum unbadanced force on the mowr due o ammature mass,
2 S e e g
F=mm r=35(157.1)" 310" =432 N

Diynamic orce transmitted to the base,

Sin

F =cF= 111 x432=39.27T N Ans

3. Natural frequency of the svstem
We Lave caleulated above that (e vaturd! frequency ol the systen,

©®, —45.35 radis Ans.

A little consideration will show that when an unbalanced machine is installed on the
foundation, it produces vibration in the foundation. In order to prevent these vibrations or to
minimize the transmission of forces to the foundation, the machines are mounted on springs
and dampers or on some vibration isolating material, as shown in Fig. 23.22. The arrangement
1s assumed to have one degree of freedom, i.e. it can move up and down only.

It may be noted that when a periodic (i.e. simple harmonic) disturbing force ¥ cos w ¢
1s applied to a machine of mass m supported by a spring of stiffness s, then the force is
transmitted by means of the spring and the damper or dashpot to thc fixed support or
foundation.

The ratio of the force transmitted (F7) to the force applicd () is known as the isolation
factor or transmissibility ratio of the spring support.

We have discussed above that the force transmitted to the foundation consists of the fol-
lowing two forces :
1.Spring force or elastic force which is equal to s. xmqv, and

2.Damping force which is equal to ¢. W Xmax-
Sincc these two forces arc perpendicular to one another, as shown in Fig.23.23, therefore
the force transmitted,

s"i’.‘i!
p v o 3 .
Pr = i 0" | (e, )
S o G ]
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When the demper 13 not provided, taen ¢ = 0, and

L= . 1 2
1-(o/m,)

From above. we sce that when @/ @y, > L € i5 negative. ‘Lhis means that there 15 a phase
differance of 1807 hetween the transnuittad foree and the distarhing “orce (Mcoserr) The value nf

®/w, must be grezter than J2 if ¢ is to b2 less thar 1 and it is the numerical value of ¢.

mdependent of any phase difference batween the forees that may cxist which is important. It 1=
Jizrefore wore convenent (0 use 2guation (7) m (he followinyg fomm, ie
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Fiz. 23.21 15 the zraph for different values of damping factor ¢/c. to show the variation of
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Fig. 23.14. Gragh showing the veniation of transmissibiisty ratio.
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2. When oy <21 then g > 1 forall valuss of damping factor ¢/ This m=ans tha- the

Iorce tratsmitied to the founcation through 2lestic suppors 15 greater than the Zorce applicd

3. When w/w, >+/2 .then ¢ < 1 for all valuas of damping facter ¢/c_. This shows that
the force transmitted throuzh elastc support is less than tae opplied fore2. Thus vitration isolation

is possible only wn the range of /0, > V2 -

5. A machine has a mass of 100 kg and unbalanced reciprocating parts of mass 2
kg which move through a vertical stroke of 80 mm with simple harmonic motion. The
machine is mounted on four springs, symmetrically arranged with respect to centre of
mass, in such a way that the machine has one degree of freedom and can undergo
vertical displacements only.

Neglecting damping, calculate the combined stiffness of the spring in order that
the force transmitted to the foundation is 1/ 25 th of the applied force, when the speed
of rotation of ma-chine crank shaft is 1000 r.p.m.

When the machine is actually supported on the springs, it is found that the
damping reduces the amplitude of successive free vibrations by 25%. Find : 1. the
force transmitted to foundation at 1000 r.p.m., 2. the force transmitted to the

foundation at reso nance, and 3. the amplitude of the forced vibration of the machine
at resonance.



Solution. Grven  miy — 100 kg : my — 2 kg : 7 — 80 mum — CO08 m ; & — 1/25
N—=1000 Ipm. o o 21=x1000/60 — 101./ rad's
Combined stiffness of springs
Let § = Combinad stiffness of springs in N/m, and
my, = Natural envenlar Reguenicy of vitmzhon of the snachnme moral/s

We kuow that transinissibility ratio (g ).

. 1 . (&F . Y
25 [ © ]—‘3_1 o’ —(m, ¥ (104.7)% = (m,)?
':”7.
or 104.7)" = ()" =25Gm,)”  or  (e,) =421.6 or @, —20.5 rad's
We know that Wy =5/ M

s—m (@,) —100x421.6 = 47 160 NAn Ans.
I. Foree momsmitted o the (ownintion a; 1000 rpom.
et F; = Foree transmutted. and
4y = hetial amphitede of vibrabo,

Smce the dempiag recuces the amp:tudz of successive free vibrations by 25%. therefore
Tinal amglitude of vibrarion.

¥ =QT5X,
We know that
x5 ax 2 % 0 axaa
ltagﬁ[—1 = ———  Or lng[ o Sy P
%) Yy =a® ‘| 0757, ,l V421 6=0a>
Squering both sides
> ") -
- 4 A 9- A
(0.2377)* _""_x“_, i 0.083 _ L“"’_
421 6-a- 421 5—a-
[ loge(ol—?slzlogelj?ﬁ: 0.2577]
35-0083a° =39.54° or a*=C884 or a=094

We know taat damping coefficient or damping force per umit velocity,
¢c=ax2my =0.94x2x100 = |83 N/m/s
and critical damping cosficient.
€. —2mwy, —2x100X320.5 = 4100 N/m/s
Actual value of transnussibility ratio,



?

2 5

l 2c.m Oy
2 S - 5
SOy ) (m, J~ |

| [ 2x188x104.7 3
i 1 4100):5:.0 ] \‘"" +0.22
- iy =
(2%188x104.7 '|3+11_ ] Yoo
1100%20.5 |\ 285
AR
35 08

Wz know thz1 the maximun imbalanred “orce on the machme due to reciprocating parts,

F=my s =2(1047° (008/2)=877 N . _f=r p=1/2)
Furce iransuulies (o the [oundation,

Fr=eF=0044x877 =38€ N Auns. iy F=RIFH

1. Farce iransmilted ta M2 foundarion ai resondance

Sinec at resonance, © =y, therefore transmissibalicy ratic.
] . XE 2
1 e ] X188 T
<7 ) 1+
\J e 4100 J _N1-0.0C84

F= e —

P 25188 2 0.092
il Yl 4100
£ '

4 0 =~ 4 4 s = ' s

A Awplitude of the forced vibratien of the nachine i resonance

=1092

We Enmwv that amplitude of the farced wibrat.on at resonance

Furte tmarsualled al resonance 367
Combined s:iffaess T 42160

= 0.7 mm Ans.

_87%107 m

6.(i) Derive the relation for magnification factor in case of forced vibration.

It 1s the raiao of maxcimom displacement of ihe forced vivrafion (s ) fo (he deflecion
au2 fo the statie ferce Fix ) We have proved in the previous article that the maximum displace
ment cr the amplitude of forced vibration.

Xo

Xpar =
Lx 4

, '] \‘3
¢ ? +(1— w ) I
V $ )
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Fig 23.11. Relationship between magnification factor and phase angle Zor different values of @2/ @, .
Magnif:cation factor or dynanue megn:fier,

Xouar 1
D= et .

Lo 2c00 _ 2e0 _ 2ew

- - —=

o K 0] =

5 Agew s Pmiy, )T oy
n

The magnification factor or dynamic magnifier gives the facror by which the static deflection
produced by a force I (i.e. x_) must be mult:pli=d 1n crder to cbtain the maxmmur amplitude of the

forced vibration (i.e. x, ) by the harmonic force I cos

X inCTA

=X, XD
Fig 23.21 shews the relationship between the magnification factor (D) and phase zngle @
for different value of /@, and for valuas of damping factor ¢'c ,=0.1.02 and 0.5.

6.(ii) A single cylinder vertical petrol engine of total mass 300 kg is mounted upon a steel
chassis frame and causes a vertical static deflection of 2 mm. The reciprocating parts of
the engine has a mass of 20 kg and move through a vertical stroke of 150 mm with simple



harmonic motion. A dashpot is provided whose damping resistance is directly
proportional to the velocity and amounts to 1.5 kN per metre per second.

Considering that the steady state of vibration is reached ; determine : 1. the amplitude of
forced vibrations, when the driving shaft of the engine rotates at 480 r.p.m., and 2.
the speed of the driving shaft at which resonance will occur.

Solution : Given. m =300kg; 8=2mm=2x10> m;m=20ke; /=150 mm
=0.15m; ¢= 1.5 kN/m/s = 1500 N/m/s ; ¥ =480 r.p.m. or w 0 200 480 / 60 = 50.3 rad/s
1. Amplitude of the foiced vibrations
Wa know that stiffness of the frame
s=mg! § =300 % 9.81/2 x 107 =147 x 16° N/m
Stace the length of stroke (/) = 150 mm = .15 m, therefore radius of crank.
r=1/2=015/2=0075m

We know that the centrifugal force due to the reciprocetmg parts or the statie Zoree.
F=m o r =20 (503)° 0.075 = 3795 N
Amplitude of the Zcreed vibrat.on (maximun),

F

M b ) ¥ ) . P W
\f(" W +3—me™)”

3795

{ » ; ; 3
v {1500)2(50.3) +[1.47x10% —300(50.3)* ]2

3795 3795

=43x10> m

f . 0 . 113
VS TX107 +500x1¢7 71010
— 5.3 mm Ans,
1. Speed ef the driving sihaft ar wiich tite résonigce econrs
T.el N = Speed of e dnvmyg sbal al wineh the resomance ocenrs w
Lo.m.
We know that the anpular speed at which th2 rasonance oceurs,

F 147x10%  _
O=0, =, [—=———— =70 rad’s
\ m 300

N=0x50/2T= /0% 60/2x = 6684 rpm. Ans
4.10 REVIEW QUESTIONS

1. Explain the term ‘dynamic magnifier’
What are the materials used for vibration isolation?

3. In vibration isolation system, if @ /® , > 1, then the phase difference between the
transmitted force and the disturbing force is ?

4. In under damped vibrating system, if x) and x; are the successive values of the amplitude
on the

5. same side of the mean position, then the logarithmic decrement is equal to




