DESIGN OF WELDED PLATE GIRDERS

5.2 Design for plate girder with thick web

Example 2

Design a welded plate girder of 20m span to support a uniformly distributed love load of 70KN/m over the span using the following data. Yield stress of steel is 250 N/mm², top flange restrained laterally. Design the cross sectional details of the plate girder to confirm to the specifications of IS 800-2007

Given data

effective span of girder = 20 m

Distributed live load = 75KN/m

Yield stress of steel = 250 N/mm^2

Step 1: Load on plate girder

load on girder
$$= (1.5 \times 70 \times 20)$$

= 2100KN

Assume self weight = (total load / 200)

= 10KN/m

Total factored load = 70 + 10

= 80 KN/m

Step 2: Bending moments and shear force

Md =
$$(WL^2/8)$$

= $(80 \times 20^2/8)$
= $4000KN$
Vd = $(WL/2)$
= $(80 \times 20/2)$

$$= 800KN$$

Step 3: Cross section of girder

Is 800 2007, page no. 63, 64

depth of plate girder

D =
$$[\sqrt{(MK / fy)}]^0.33$$

$$K = (d / tw) < 200 €$$

d = depth of web

tw = thickness of web

Yield stress ration

$$= (250 / 250)$$

= 1

$$= 200 \times 1$$

$$= 200$$

$$D = [\sqrt{(4000 \times 10^{6} \times 200 / 250)}]^{0.33}$$

= 1500mm

adopt overall depth D = 1500mm

Allowing for 40mm flange plates

Depth of web
$$d = 1500 - 80$$

= 1420 mm

Thickness of web

adopt 20mm thick and 1420mm deep web

Width of flange

Width of flange =
$$0.2 \text{ d}$$
 to 0.3 d
= $0.2 \times 1420 \text{ to } 0.3 \times 1420$
= $288 \text{ to } 426$
= 350 mm

adopt width of flange is 350mm

Check for plastic and compact section, the ratio

$$b / tf < 9.4$$
€

€ = 1

 $tf = 40mm$
 $bf = 350mm$
 $350 / 40 = 8.7$

The ratio of satisfies the plastic section

Step 4: Moment capacity

The moment capacity of the plate girder is

Is 800 2007, page no. 53

$$\begin{aligned} \text{Md} &= [\ (\beta b \ x \ Zp \ x \ fy) \ / \ \gamma mo] \\ \beta b &= 1 \\ \\ Zp &= [\ (2 \ x \ bf \ x \ tf \ (D - tf) \ / \ 2 \) + (\ tw \ x \ d^2 \) \ / \ 4 \] \\ &= [\ (2 \ x \ 350 \ x \ 40 \ (1500 - 40) \ / \ 2 \) + (\ 20 \ x \ 1420^2 \) \ / \ 4 \] \\ &= 30.52 \ x \ 10^6 \ mm^3 \\ \text{Md} &= [\ (1 \ x \ 30.52 \ x \ 10^6 \ x \ 250) \ / \ 1.1] \\ &= 6936 \ KNm > 4000 KNm \end{aligned}$$

Hence the section is safe

Step 5 : Shear capacity

Is 800 2007, page no. 59

Design shear strength

$$Vd = Vn / \gamma mo$$

Vn = Vp
Vp =
$$[(Av \times fyw) / \sqrt{3}]$$

Av = d x tw
= 1420 x 20
= 28400mm^2
Vp = $[(Av \times fyw) / \sqrt{3}]$
= $[(28400 \times 250) / \sqrt{3}]$
= 4099186 N
Vd = Vp / ymo
= 4099186 / 1.1

= 3726533 = 3726.5 KN > 800 KN

Hence the section is safe

Step 6: Check for bearing stiffeners

Is 800 2007, page no. 67

Fw =
$$(b1 + n2)$$
 tw $(fy / \gamma mo)$

Minimum stiffeners bearing length

b1 =
$$bf/2$$

= $350/2$
= $175mm$
n2 = 2.5×40
= $100mm$
Fw = $(b1 + n2) tw (fy/\gamma mo)$

=
$$(175 + 100) \times 20 \times (250 / 1.1)$$

= $1250 \times 10^3 \text{ KN} > 800 \text{ KN}$

Fig.5.1 Bearing stiffener

OBSERVE OPTIMIZE OUTSPREAD