
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

3.4. Fruitful functions: return values, parameters, local and global scope,

function composition, recursion

Fruitful Functions

 Function that returns value are called as fruitful functions.The return statement is

followed by an expression which is evaluated, its result is returned to the caller as the “fruit” of

calling this function.

len(variable) – which takes input as a string or a list and produce the length of string or a list as

an output.

In a fruitful function the return statement includes a return value. This statement means:

Return immediately from this function and use the following expression as a return value. The

expression provided can be arbitrarily complicated, so we could have written this function more

concisely:

On the other hand, temporary variables like temp often make debugging easier. Sometimes it
is useful to have multiple return statements, one in each branch of a conditional.

We have already seen the built-in abs, now we see how to write our own:

Input the valuefruitful functionreturn the result

def area(radius):

return 3.14159 * radius**2

def absolute_value(x):

if x < 0:

return -x

else:

return x

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

Since these return statements are in an alternative conditional, only one will be executed. As

soon as one is executed, the function terminates without executing any subsequent statements.

Another way to write the above function is to leave out the else and just follow the if condition

by the second return statement.

Code that appears after a return statement, or any other place the flow of execution can

never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through the

program hits a return statement. The following version of absolute_value fails to do this:

This version is not correct because if x happens to be 0, neither condition is true, and the

function ends without hitting a return statement. In this case, the return value is a special value

called None:

None is the unique value of a type called the NoneType:

def absolute_value(x):

if x < 0:

return -x

return x

def absolute_value(x):

if x < 0:

return -x

elif x > 0:

return x

>>>type(None)

>>>print absolute value(0)

None

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

All Python functions return None whenever they do not return another value.

Example:

Write a python program to find distance between two points:

import math

def distance(x1,y1,x2,y2): # Defining the Function Distance

 dx=x2-x1

 dy=y2-y1

 print("The value of dx is", dx)

 print("The value of dy is", dy)

 d= (dx**2 + dy**2)

 dist=math.sqrt(d)

 return dist

x1 = float(input("Enter the first Number: ")) #Getting inputs from user

x2 = float(input("Enter the Second Number: "))

y1 = float(input("Enter the third number: "))

y2 = float(input("Enter the forth number: "))

print("The distance between two points are",distance(x1,x2,y1,y2))

#Calling the function distance

Output:

>>> Enter the first Number: 2

 Enter the Second Number: 4

 Enter the third number: 6

 Enter the forth number: 12

 The value of dx is 4.0

 The value of dy is 8.0

 The distance between two points are 8.94427190999916

>>>

Explanation for Example 2:

 Function Name – ‘distance()’

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

 Function Definition – def distance(x1,y1,x2,y2)

Formal Parameters - x1, y1, x2, y2

Actual Parameter – dx, dy

 Return Keyword – return the output value ‘dist’

 Function Calling – distance(x1,y1,x2,y2)

Parameter in fruitful function

A function in python

 Take input data,called parameter

 Perform computation

 Return result

 Once the function is defined,it can be called from main program or from another function.

Functioncall statement syntax

Parameter is the input data that is sent from one function to another.The parameters are of two

types

1.Formal parameter

 The parameter defined as part of the function definition.

 The actual parameter is received by the formal parameter.

2.Actual parameter

 The parameter is defined in the function call

Example:

def cube(x):

 return x*x*x #x is the formal parameter

a=input(“Enter the number=”)

def funct(param1,param2):

 statements

 return value

Result=function_name(param1,param2

)

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

b=cube(a) #a is the actual parameter

print”cube of given number=”,b

Result:

Enter the number=2

Cube of given number=8

Scope and Lifetime of variables

Scope of a variable is the portion of a program where the variable is recognized.
Parameters and variables defined inside a function is not visible from outside. Hence, they have
a local scope.

Lifetime of a variable is the period throughout which the variable exits in the memory.

The lifetime of variables inside a function is as long as the function executes.

They are destroyed once we return from the function. Hence, a function does not
remember the value of a variable from its previous calls.

Eg:

def my_func():

x = 10

print("Value inside function:",x)

x = 20

my_func()

print("Value outside function:",x)

Output:

Value inside function: 10

Value outside function: 20

Local Scope and Local Variables

A local variable is a variable that is only accessible from within a given function. Such

variables are said to have local scope .

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

 Global Variables and Global Scope

A global variable is a variable that is defined outside of any function definition. Such

variables are said to have global scope .

 Variable max is defined outside func1 and func2 and therefore “global”

to each.

Function Composition

We can call one function from within another. This ability is called composition.

As an example, we’ll write a function that takes two points, the center of the circle and a

point on the perimeter, and computes the area of the circle.

Assume that the center point is stored in the variables xc and yc, and the perimeter point

is in xp and yp. The first step is to find the radius of the circle, which is the distance between the

two points.

radius = distance(xc, yc, xp, yp)

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

The second step is to find the area of a circle with that radius and return it. Again we will

use one of our earlier functions:

 Wrapping that up in a function, we get:

We called this function area2 to distinguish it from the area function defined earlier.

There can only be one function with a given name within a given module. The temporary

variables radius and result are useful for development and debugging, but once the program is

working, we can make it more concise by composing the function calls:

Example:

Write a python program to add three numbers by using function:

def addition(x,y,z): #function 1

 add=x+y+z

 return add

def get(): #function 2

 a=int(input("Enter first number:"))

 b=int(input("Enter second number:"))

 c=int(input("Enter third number:"))

 print("The addition is:",addition(a,b,c)) #Composition function calling

get() #function calling

result = area(radius)

return result

def area2(xc, yc, xp, yp):

radius = distance(xc, yc, xp, yp)

result = area(radius) return result

def area2(xc, yc, xp, yp):

return area(distance(xc, yc, xp, yp))

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

Output:

Enter first number:5

Enter second number:10

Enter third number:15

The addition is: 30

Recursion:

 A Recursive function is the one which calls itself again and again to repeat the code. The

recursive function does not check any condition. It executes like normal function definition and

the particular function is called again and again

Syntax:

Example-1:

Write a python program to find factorial of a number using Recursion:

(Positive value of n ,then n! can be calculated as n!=(n-1)….2.1 it ncan be written as (n-1)!

 Hence n! is the product of n and (n-1)! n!=n.(n-1)!)

def fact(n):

 if(n<=1):

 return n

 else:

 return n*fact(n-1)

n=int(input("Enter a number:"))

print("The Factorial is", fact(n))

Output:

>>> Enter a number:5

 The Factorial is 120

>>>

def function(parameter):

 #Body of function

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

Explanation:

First Iteration - 5*fact(4)

Second Iteration - 5*4* fact(3)

Third Iteration - 5*4*3*fact(2)

Fourth Iteration - 5*4*3*2* fact(1)

Fifth Iteration - 5*4*3*2*1

Example-2:

Write a python program to find the sum of a ‘n’ natural number using Recursion:

def nat(n):

 if(n<=1):

 return n

 else:

 return n+nat(n-1)

n=int(input("Enter a number:"))

print("The Sum is", nat(n))

Output:

>>> Enter a number: 5

 The Sum is 15

Explanation:

First Iteration – 5+nat(4)

Second Iteration – 5+4+nat(3)

Third Iteration – 5+4+3+nat(2)

Fourth Iteration – 5+4+3+2+nat(1)

Fifth Iteration – 5+4+3+2+1

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 GE3151-PROBLEM SOLVING AND PYTHON PROGRAMMING

The Advantages of recursion

1. Recursive functions make the code look clean and elegant.

2. A complex task can be broken down into simpler sub-problems using recursion.

3. Sequence generation is easier with recursion than using some nested

 iteration.

The Disadvantages of recursion

1. Sometimes the logic behind recursion is hard to follow through.

2. Recursive calls are expensive (inefficient) as they take up a lot of memory and time.

3. Recursive functions are hard to debug.

