Incremental cost curve

- From the input-output curves, the incremental fuel cost (IFC) curve can be obtained.
- The IFC is defined as the ratio of a small change in the input to the corresponding small change in the output

$$
\text { Incremental Fuel Cost }=\frac{\text { Small Change in Input }}{\text { Small Change in Output }}=\frac{\Delta F}{\Delta P_{G}}
$$

- where $\Delta \mathrm{F}$ represents small changes. As the $\Delta \mathrm{P}_{\mathrm{G}}$ quantities become progressively smaller, it is seen that the IFC is d (input) and is expressed in Rs./MWh. d (output) A typical plot of the IFC versus output power is shown in Fig
- The incremental cost curve is obtained by considering the change in the cost of generation to the change in real power generation at various points on the input-output curves, i.e., slope of the input-output curve as shown in Fig

Heat Rate Curve

- The heat rate characteristic obtained from the plot of the net heat rate in Btu/kWh or $\mathrm{kCal} / \mathrm{kWh}$ versus power output in kW Let $H i$ be the heat rate in $\mathrm{kCal} / \mathrm{kWh}$ which is the heat energy obtained by the combustion of the fuel in Kcal needed to generate one unit of electric energy.

- The thermal unit is most efficient at a minimum heat rate, which corresponds to a particular generation P . The curve indicates an increase in heat rate at low and high power limits.
- Thermal efficiency of the unit is affected by the following factors: condition of steam, steam cycle used, re-heat stages, condenser pressure, etc.

Normally, Heat Rate $=\frac{\text { Input in } \mathrm{Rs} / \mathrm{Hr}}{\text { Output in } \mathrm{MW}}$

Incrémental Heat Rate:

- It is the ratio of change in input to the corresponding change in output at any operating point.

$$
\text { Incremental Heat Rate }=\frac{\Delta \text { input }}{\Delta \text { output }}=\frac{\Delta \boldsymbol{F}}{\Delta \boldsymbol{P}}
$$

Incremental Efficiency:

- The reciprocal of the incremental fuel rate or heat rate, which is defined as the ratio of output energy to input energy, gives a measure of fuel efficiency for the input

Incremental Efficiency $=\frac{\Delta \text { output }}{\Delta \text { input }}=\frac{\Delta \boldsymbol{P}}{\Delta \boldsymbol{F}}$

Cost Function

Let the cost of the Fuel be K Rs/Mkcal. Then the fuel input cost $C_{i}\left(P_{G i}\right)$ is

$$
c_{i}\left(P_{G i}\right)=K F_{i}\left(P_{G i}\right)
$$

Here C_{i} is the cost expressed in Rs/hr of producing energy in the generator unit i. $F_{i}\left(P_{G i}\right)$ is the Fuel Energy input

$$
F_{i}\left(P_{G i}\right)=P_{G i} H_{i}\left(P_{G i}\right)
$$

$H_{i}\left(P_{G i}\right)$ is obtained from the heat rate curve
Substitute the value of $F_{i}\left(P_{G i}\right)$ in $C_{i}\left(P_{G i}\right)$

$$
C_{i}\left(P_{G i}\right)=K P_{G i} H_{i}\left(P_{G i}\right)
$$

The heat rate curve can be approximated why because the initial portion of curve decrease, reaches minimum point and then increases.

$$
H_{i}\left(P_{G i}\right)=\frac{c_{i}^{\prime}}{P_{G i}}+b_{i}^{\prime}+a_{i}^{\prime} P_{G i}
$$

Where a_{i}, b_{i} and c_{i} are positive coefficients

$$
\text { Input Energy Rate } \begin{aligned}
F_{i}\left(P_{G i}\right)= & P_{G i} H_{i}\left(P_{G i}\right)=P_{G i}\left[\frac{c_{i}}{P_{G i}}+b_{i}^{\prime}+a_{i}^{\prime} P_{G i}\right] \\
& =a^{\prime} P_{G i}^{2}+b^{\prime} P_{G i}+c_{i}^{\prime}
\end{aligned}
$$

Fuel Cost $C_{i}\left(P_{G i}\right)=K F_{i}\left(P_{G i}\right)$

$$
C_{i}\left(P_{G i}\right)=a P_{G i}^{2}+b P_{G i}+c_{i}
$$

