
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 CONTENT ADDRESSABLE NETWORKS (CAN)

 The real motivation behind CAN is the existing networks are not scalable.

 CAN support basic hash table operations on key-value pairs (K,V): insert, search, delete

 CAN is composed of individual nodes and each node stores a chunk (zone) of the hash

table

 A hash table is formed as a subset of the (K,V) pairs in the table.

 Each node stores state information about neighbor zones.

 The requests (insert, lookup, or delete) for a key are routed by intermediate nodes using

a greedy routing algorithm.

 It do not need any centralized control (completely distributed).

 The small per-node state is independent of the number of nodes in the system

(scalable) and also the nodes can route around failures (fault-tolerant).

Properties of CAN

i) Distributed

ii) fault-tolerant

iii) scalable

iv) independent of the naming structure

v) implementable at the application layer

vi) self-organizing and self-healing.

A content-addressable network (CAN) is scalable indexing mechanism that maps objects

to their locations in the network.

CAN is a logical d-dimensional Cartesian coordinate space organized as a d-torus

logical topology, i.e., a virtual overlay d-dimensional mesh with wrap-around.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 A d-torus logical topology is a virtual overlay d-dimensional mesh with wrap-

around.

 The entire space is partitioned dynamically among all the nodes present, so that each

node i is assigned a disjoint region r(i) of the space.

 As nodes arrive, depart, or fail, the set of participating nodes, as well as the

assignment of regions to nodes

 For any object v, its key k(v) is mapped using a deterministic hash function to a point p

in the Cartesian coordinate space.

Fig : d-Torus topology

 The (k, v) pair is stored at the node that is presently assigned the region that contains

the point p. This means the (k, v) pair is stored at node i if presently the point p

corresponding to (k, v) lies in region (r, i).

 To retrieve object v, the same hash function is used to map its key k to the same point

p.

 The node that is presently assigned the region that contains p- is accessed to retrieve

v.

 The three core components of a CAN design are the following:

1. Setting up the CAN virtual coordinate space, and partitioning it among the

nodes as they join the CAN.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

2. Routing in the virtual coordinate space to locate the node that is assigned the

region containing p.

3. Maintaining the CAN due to node departures and failures.

Initialization of CAN

The following are the steps in CAN initialization:

1. Each CAN is assumed to have a unique DNS name that maps to the IP address of one

or a few bootstrap nodes of that CAN.

2. To join a CAN, the joiner node queries a bootstrap node via a DNS lookup, and the

bootstrap node replies with the IP addresses of some randomly chosen nodes that it

believes are participating in the CAN.

3. The joiner chooses a random point p in the coordinate space. The joiner sends a

request to one of the nodes in the CAN, of which it learnt in step 2, asking to be

assigned a region containing p. The recipient of the request routes the request to the

owner old_owner(p) of the region containing p, using the CAN routing algorithm.

4. The old_owner(p) node splits its region in half and assigns one half to the joiner. The

region splitting is done using an a priori ordering of all the dimensions, so as to decide

which dimension to split along. This also helps to methodically merge regions, if

necessary. The (k, v) tuples for which the key k now maps to the zone to be transferred

to the joiner, are also transferred to the joiner.

5. The joiner learns the IP addresses of its neighbors from old_owner(p). The neighbors

are old_owner(p) and a subset of the neighbors of old_owner(p). The old_owner(p)

also updates its set of neighbors. The new joiner as well as old_owner(p) inform their

neighbors of the changes to the space allocation, so that they have correct information

about their neighborhood and can route correctly. Each node has to send an immediate

update of its assigned region, followed by periodic Heartbeat refresh messages, to all

A bootstrap node is responsible for tracking a partial list of the nodes that it believes

are currently participating in the CAN.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

max

its neighbors.

 When a node joins a CAN, only the neighboring nodes in the coordinate space are

required to participate in the joining process.

 The overhead is the order of the number of neighbors, which is O(d) and

independent of n, the number of nodes in the CAN.

CAN Routing

 CAN routing uses the straight-line path from the source to the destination in the

logical Euclidean space.

 Each node maintains a routing table that tracks its neighbor nodes in the logical

coordinate space.

 In d-dimensional space, nodes x and y are neighbors if the coordinate ranges of their

regions overlap in d − 1 dimensions, in one dimension.

 All the regions are convex.

 Let the region x be [[x1
min, x1

max], …[xa
min,x

a]] and the region y be [[y1
min, y1

max],

…[yd
min, y

d
max]].

 X and y are neighbors if there is some dimension j such that xj
max=yi

minand for all

dimensions, [xi
min, x

i
max]] and [yi

min, y
i
max]] overlap.

Fig : Two-dimensional CAN space

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 The routing table at each node tracks the IP address and the virtual coordinate region

of each neighbor.

 To locate value v, its key (k, v) is mapped to a point p- whose coordinates are used in

the message header.

 Knowing the neighbors’ region coordinates, each node follows simple greedy routing by

forwarding the message to that neighbor having coordinates that are closest to the

destination’s coordinates.

 To implement greedy routing to a destination node x, the present node routes a

message to that neighbor among the neighbors k ∈ Neighbors:

 Assuming equal-sized zones in d-dimensional space, the average number of neighbors

for a node is O(d).

 The average path length is (d/4) n1/d.

 The implication on scaling is that each node has about the same number of neighbors

and needs to maintain about the same amount of state information, irrespective of the

total number of nodes participating in the CAN.

 The CAN structure is superior to that of Chord.

 Unlike in Chord, there are typically many paths for any given source-destination pair.

 This greatly helps for fault-tolerance.

 Average path length in CAN scales as O(n1/d) as opposed to log n for Chord.

Maintenance in CAN

 When a node voluntarily departs from CAN, it hands over its region and the associated

database of (key, value) tuples to one of its neighbors.

 If the node’s region can be merged with that of one of its neighbors to form a valid

convex region, then such a neighbor is chosen.

 Otherwise the node’s region is handed over to the neighbor whose region has the

smallest volume or load – the regions are not merged and the neighbor handles both

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

zones temporarily until a periodic background region reassignment process runs to

integrate the regions and prevent further fragmentation.

 AN requires each node to periodically send a HEARTBEAT update message to each

neighbor, giving its assigned region coordinates, the list of its neighbors, and their

assigned region coordinates.

 When a node dies, the neighbors suspect its death and initiate a TAKEOVER protocol to

decide who will take over the crashed node’s region.

 Despite this TAKEOVER protocol, the (key, value) tuples in the crashed node’s

database remain lost until the primary sources of those tuples refresh the tuples.

 Requiring the primary sources to periodically issue such refreshes also serves the dual

purpose of updating stale or dirty objects in the CAN.

TAKEOVER protocol

 When a node suspects that a neighbor has died, it starts a timer in proportion to its

region’s volume.

 On timeout, it sends a TAKEOVER message, with its region volume piggybacked on

the message, to all the neighbors of the suspected failed node.

 When a TAKEOVER message is received, a node cancels its bid to take over the failed

node’s region if the received TAKEOVER message contains a smaller region volume than

that of the recipient’s region.

 This protocol thus helps in load balancing by choosing the neighbor whose region

volume is the smallest, to take over the failed node’s region. As all nodes initiate the

TAKEOVER protocol, the node taking over also discovers its neighbors and vice versa.

 In the case of multiple concurrent node failures in one vicinity of the Cartesian space,

a more complex protocol using an expanding ring search for the TAKEOVER messages

can be used.

 A graceful departure as well as a failure can result in a neighbor holding more than one

region if its region cannot be merged with that of the departed or failed node.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 To prevent the resulting fragmentation and restore the 1 → 1node to region

assignment, there is a background reassignment algorithm that is run periodically.

 Conceptually, consider a binary tree whose root represents the entire space. An

internal node represents a region that existed earlier but is now split into regions

represented by its children nodes.

 A leaf represents a currently existing region, and overloading the semantics and the

notation, also the node that represents that region.

 When a leaf node x fails or departs, there are two cases:

1. If its sibling node y is also a leaf, then the regions of x and y are merged

and assigned to y. The region corresponding to the parent of x and y

becomes a leaf and it is assigned to node y.

2. If the sibling node y is not a leaf, run a depth-first search in the sub tree

rooted at y until a pair of sibling leaves (say, z1 and z2) is found. Merge the

regions of z1 and z2, making their parent z a leaf node, assign the merged

region to node z2, and the region of x is assigned to node z1.

 A distributed version of the above depth-first centralized tree traversal can be

performed by the neighbors of a departed node.

 The distributed traversal leverages the fact that when a region is split, it is done in

accordance to a particular ordering on the dimensions.

 Node i performs its part of the depth first traversal as follows:

1. Identify the highest ordered dimension dima that has the shortest

coordinate range [idima
min, i

dima
max]. Node i’s region was last halved along

dimension dima.

2. Identify neighbor j such that j is assigned the region that was split off

from i’s region in the last partition along dimension dima. Node j’s region

i’s region along dimension dima.

3. If j’s region volume equals i’s region volume, the two nodes are siblings

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

and the regions can be combined. This is the terminating case of the depth

first tree search for siblings. Node j is assigned the combined region, and

node i takes over the region of the departed node x. This take over by

node i is done by returning the recursive search request to the originator

node, and communicating i’s identity on the replies.

4. Otherwise, j’s region volume must be smaller than i’s region volume. Node i

forwards a recursive depth-first search request to j.

CAN Optimizations

The following are the design techniques to improve the performance of factors:

 Multiple dimensions: As the path length is O(d ·n1/d), increasing the number of

dimensions decreases the path length and increases routing fault tolerance at the

expense of larger state space per node.

 Multiple realities: A coordinate space is termed as a reality. The use of multiple

independent realities assigns to each node a different region in each different reality.

This implies that in each reality, the same node will store different (k, v) tuples

belonging to the region assigned to it in that reality, and will also have a different

neighbor set. The data contents (k, v) get replicated in each reality, leading to higher

data availability. The multiple copies of each (k, v) tuple, one in each reality, offer a

choice – the closest copy can be accessed. Routing fault tolerance improves because

each reality offers a set of different paths to the same (k, v) tuple. All these contribute

to more storage.

 Delay latency: The delay latency on each of the candidate logical links can also be used

in making the routing decision.

 Overloading coordinate regions: Each region can be shared by multiple nodes, up to

some upper limit. This reduces path length and path latency. The fault tolerance

improves because a region becomes empty only if all the nodes assigned to it depart or

fail concurrently. The per-hop latency decreases because a node can select the closest

node from the neighboring region to forward a message towards the destination. This

demands many of the aspects of the basic CAN protocol need to be reengineered to

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

accommodate overloading of coordinate regions.

 Multiple hash functions: The use of multiple hash functions maps each key to

different points in the coordinate space. This replicates each (k, v) pair for each hash

function used. The effect is similar to that of using multiple realities.

 Topologically sensitive overlay: The CAN overlay has no correlation to the physical

proximity or to the IP addresses of domains. Logical neighbors in the overlay may be

geographically far apart, and logically distant nodes may be physical neighbors. By

constructing an overlay that accounts for physical proximity in determining logical

neighbors, the average query latency can be significantly reduced.

CAN Complexity

 The time overhead for a new joiner is O(d) for updating the new neighbors in the

CAN, and O(d/4 log(n)) for routing to the appropriate location in the coordinate space.

 The time overhead and the overhead in terms of the number of messages for a node

departure is O(d2), because the TAKEOVER protocol uses a message exchange

between each pair of neighbors of the departed node.

.

	CONTENT ADDRESSABLE NETWORKS (CAN)
	Properties of CAN
	Fig : d-Torus topology
	Initialization of CAN
	CAN Routing
	Fig : Two-dimensional CAN space
	Maintenance in CAN
	TAKEOVER protocol
	CAN Optimizations
	CAN Complexity

