
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

LOCKING PROTOCOLS

 A lock is a variable associated with a data item that describe the statues of the item with

respect to possible operations that can be applied to it. Locking is an operation which secures

(a) Permission to Read

(b) Permission to Write a data item for a transaction.

Example:

Lock (X). Data item X is locked in behalf of the requesting transaction. Unlocking is an operation

which removes these permissions from the data item. Example:

Unlock (X): Data item X is made available to all other transactions. Lock and Unlock are Atomic

operations.

Lock Manager:

 • Managing locks on data items.

Lock table:

 • Lock manager uses it to store the identity of transaction locking a data item, the data

item, lock mode and pointer to the next data item locked. One simple way to implement a lock

table is through linked list

Types of lock

 Binary lock

 Read/write(shared / Exclusive) lock

Binary lock –

It can have two states (or) values 0 and 1.

0 – unlocked

1 - locked

 Lock value is 0 then the data item can accessed when requested.

 When the lock value is 1, the item cannot be accessed when requested.

Binary Lock

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

Lock_item(x)

B : if lock(x) = 0 (* item is unlocked *)

then lock(x) //1

else begin

 wait (until lock(x) = 0)

 goto B;

end;

Unlock_item(x)

B : if lock(x)=1 (* item is locked *)

then unlock(x) \\ 0

else

 printf (‗ already is unlocked ‗)

 goto B;

end;

Read / write(shared/exclusive) lock

Read_lock

o Its also called shared-mode lock

o If a transaction Ti has obtain a shared-mode lock on item X, then Ti can read, but

cannot write , X.

o Outer transactions are also allowed to read the data item but cannot write.

Read_lock(x)

B : if lock(x) = “unlocked” then (1)

begin

lock(x) //“read_locked”)

read(x) //1

else if

 lock(x) = “read_locked” then (2)

read(x) //no_of_read(x) +1

else begin

wait (until lock(x) = “unlocked”)

goto B;

end;

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

Write_lock(x)

B : if lock(x) = “unlocked” then (1)

begin

 lock(x) //”write_locked”

else if

lock(x) = “write_locked” (2)

wait (until lock(x) = “unlocked”)

else begin

lock(x)=“read_locked” then (3)

wait (until lock(x) = ―unlocked‖)

end;

Unlock(x)

If lock(x) = “write_locked” then

begin

 unlock(x) \\“unlocked”

else if

 lock(x) = “read_locked” then

begin

 read(x) \\no_of_read(x) - 1

 if (no_of_read(x) = 0) then

begin

 unlock(x) \\“unlocked”

end

TWO PHASE LOCKING PROTOCOL

This protocol requires that each transaction issue lock and unlock request in two phases

 Growing phase

 Shrinking phase

Growing phase

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

 During this phase new locks can be occurred but none can be released

Shrinking phase

 During which existing locks can be released and no new locks can be occurred

Let’s see a transaction implementing 2-PL.

 T1 T2

1 lock-S(A)

2 lock-S(A)

3 lock-X(B)

4 ……. ……

5 Unlock(A)

6 Lock-X(C)

7 Unlock(B)

8 Unlock(A)

9 Unlock(C)

10 …….

This is just a skeleton transaction which shows how unlocking and locking works with 2-PL. Note

for:

Transaction T1:

 Growing Phase is from steps 1-3.

 Shrinking Phase is from steps 5-7.

 Lock Point at 3

Transaction T2:

 Growing Phase is from steps 2-6.

 Shrinking Phase is from steps 8-9.

 Lock Point at 6

What is LOCK POINT ? The Point at which the growing phase ends, i.e., when transaction takes

the final lock it needs to carry on its work.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

Types of two phase protocol

• Strict two phase locking protocol

• Rigorous two phase locking protocol

Strict two phase locking protocol

 This protocol requires not only that locking be two phase, but also all exclusive locks taken

by a transaction be held until that transaction commits

Rigorous two phase locking protocol

This protocol requires that all locks be held until all transaction commits.

Consider the two transaction T1 and T2

T1 :

 read(a1);

 read(a2);

 …….

 read(an);

 write(a1);

T2:

 read(a1);

 read(a2);

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

 display(a1+a1);

Lock conversion

• Lock Upgrade

• Lock Downgrade

Lock upgrade:

 Conversion of existing read lock to write lock

 Take place in only the growing phase

if Ti has a read-lock (X) and Tj has no read-lock (X) (i != j)

 then convert read-lock (X) to write-lock (X)

else

 force Ti to wait until Tj unlocks X

Lock downgrade:

 Conversion of existing write lock to read lock

 Take place in only the shrinking phase

Ti has a write-lock (X) (*no transaction can have any lock on X*)

convert write-lock (X) to read-lock (X)

Log

 Log is a history of actions executed by a database management system to guarantee ACID

properties over crashes or hardware failures.

 Physically, a log is a file of updates done to the database, stored in stable storage.

Log rule

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

 – A log records for a given database update must be physically written to the log, before

the update physically written to the database.

 – All other log record for a given transaction must be physically written to the log, before

the commit log record for the transaction is physically written to the log.

 – Commit processing for a given transaction must not complete until the commit log

record for the transaction is physically written to the log.

System log

– [Begin transaction ,T]

– [write_item , T, X , oldvalue,newvalue]

– [read_item,T,X]

– [commit,T]

– [abort,T]

 Assumes fail-stop model – failed sites simply stop working, and do not cause any

other harm, such as sending incorrect messages to other sites.

 Execution of the protocol is initiated by the coordinator after the last step of the

transaction has been reached.

 The protocol involves all the local sites at which the transaction executed

 Let T be a transaction initiated at site Si, and let the transaction coordinator at Si

be Ci

Phase 1: Obtaining a Decision (prepare)

 Coordinator asks all participants to prepare to commit transaction Ti.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

o Ci adds the records <prepare T> to the log and forces log to stable storage

o sends prepare T messages to all sites at which T executed

 Upon receiving message, transaction manager at site determines if it can commit the

transaction

 if not, add a record <no T> to the log and send abort T message to Ci

 if the transaction can be committed, then:

 add the record <ready T> to the log

 force all records for T to stable storage

 send ready T message to Ci

Phase 2: Recording the Decision (commit)

 T can be committed of Ci received a ready T message from all the participating sites:

otherwise T must be aborted.

 Coordinator adds a decision record, <commit T> or <abort T>, to the log and forces record

onto stable storage. Once the record stable storage it is irrevocable (even if failures occur)

 Coordinator sends a message to each participant informing it of the decision (commit or

abort)

 Participants take appropriate action locally.

Handling of Failures - Site Failure

When site Si recovers, it examines its log to determine the fate of transactions active at the time

of the failure.

• Log contain <commit T> record: site executes redo (T)

• Log contains <abort T> record: site executes undo (T)

• Log contains <ready T> record: site must consult Ci to determine the fate of T.

– If T committed, redo (T)

– If T aborted, undo (T)

• The log contains no control records concerning T replies that Sk failed before responding to the

prepare T message from Ci

 – since the failure of Sk precludes the sending of such a response Ci must abort T

 – Sk must execute undo (T)

Handling of Failures- Coordinator Failure

 If coordinator fails while the commit protocol for T is executing then participating sites must

decide on T‘s fate:

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

 1. If an active site contains a <commit T> record in its log, then T must be committed.

 2. If an active site contains an <abort T> record in its log, then T must be aborted.

 3. If some active participating site does not contain a <ready T> record in its log, then the

failed coordinator Ci cannot have decided to commit T. Can therefore abort T.

 4. If none of the above cases holds, then all active sites must have a <ready T> record in

their logs, but no additional control records (such as <abort T> of <commit T>).

In this case active sites must wait for Ci to recover, to find decision.

 • Blocking problem : active sites may have to wait for failed coordinator to recover.

Handling of Failures - Network Partition

 If the coordinator and all its participants remain in one partition, the failure has no effect

on the commit protocol.

 If the coordinator and its participants belong to several partitions:

– Sites that are not in the partition containing the coordinator think the coordinator

has failed, and execute the protocol to deal with failure of the coordinator.

 No harm results, but sites may still have to wait for decision from coordinator.

 The coordinator and the sites are in the same partition as the coordinator think that the

sites in the other partition have failed, and follow the usual commit protocol.

 Again, no harm results

