
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 
 

CS8392 OBJECT ORIENTED PROGRRAMMING 

 

INTERFACES 

An interface is a reference type in Java. It is similar to class. It is a collection of 

abstract methods. Along with abstract methods, an interface may also contain constants, 

default methods, static methods, and nested types. Method bodies exist only for default 

methods and static methods. 

An interface is similar to a class in the following ways: 

• An interface can contain any number of methods. 

• An interface is written in a file with a .java extension, with the name of the 

interface matching the name of the file. 

• The byte code of an interface appears in a .class file. 

• Interfaces appear in packages, and their corresponding bytecode file must be in a 

directory structure that matches the package name. 

Uses of interface: 

• Since java does not support multiple inheritance in case of class, it can be 

achieved by using interface. 

• It is also used to achieve loose coupling. 

• Interfaces are used to implement abstraction. 

Defining an Interface 

An interface is defined much like a class. 

Syntax: 

accessspecifier interface interfacename 

{ 

return-type method-name1(parameter- list); 

 return-type method-name2(parameter-list); 

 type final-varname1 = value; 

type final-varname2 = value; 

// ... 

return-type method-nameN(parameter-list); 

 type final-varnameN = value; 

} 

When no access specifier is included, then default access results, and the interface is only 

available to other members of the package in which it is declared. When it is declared as pub- 

lic, the interface can be used by any other code. 

• The java file must have the same name as the interface. 

• The methods that are declared have no bodies. They end with a semicolon after the 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 
 

CS8392 OBJECT ORIENTED PROGRRAMMING 

 

parameter list. They are abstract methods; there can be no default implementation of 

any method specified within an interface. 

• Each class that includes an interface must implement all of the methods. 

• Variables can be declared inside of interface declarations. They are implicitly final 

and static, meaning they cannot be changed by the implementing class. They must 

also be initialized. 

• All methods and variables are implicitly public. 

Sample Code: 

The following code declares a simple interface Animal that contains two methods called 

eat() and travel() that take no parameter. 

/* File name : Animal.java 

*/ interface Animal { 

public void eat(); 

public void travel(); 

} 

Implementing an Interface 

Once an interface has been defined, one or more classes can implement that interface. To 

implement an interface, the ‘implements’ clause is included in a class definition and then the 

methods defined by the interface are created. 

Syntax: 

class classname [extends superclass] [implements interface [,interface...]] 

{ 

// class-body 

} 

Properties of java interface 

• 

 
• 

 
• 

• 

 
Rules 

• 

• 

• 

If a class implements more than one interface, the interfaces are separated with a 

comma. 

If a class implements two interfaces that declare the same method, then the same 

method will be used by clients of either interface. 

The methods that implement an interface must be declared public. 

The type signature of the implementing method must match exactly the type signature 

specified in the interface definition. 

 
 

A class can implement more than one interface at a time. 

A class can extend only one class, but can implement many interfaces. 

An interface can extend another interface, in a similar way as a class can extend 

another class. 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 
 

CS8392 OBJECT ORIENTED PROGRRAMMING 

 

Sample Code 1: 

The following code implements an interface Animal shown earlier. 

/* File name : MammalInt.java */ 

public class Mammal implements Animal 

{ 

public void eat() 

{ 

System.out.println(“Mammal eats”); 

} 

public void travel() 

{ 

System.out.println(“Mammal travels”); 

} 

public int noOfLegs() 

{ 

return 0; 

} 

public static void main(String args[]) 

{ 

Mammal m = new Mammal(); 

m.eat(); 

m.travel(); 

} 

} 

Output: 

Mammal eats Mammal 

travels 

It is both permissible and common for classes that implement interfaces to define ad- 

ditional members of their own. In the above code, Mammal class defines additional method 

called noOfLegs(). 

Sample Code 2: 

The following code initially defines an interface ‘Sample’ with two members. This inter- 

face is implemented by a class named ‘testClass’. 

import java.io.*; 

// A simple interface 

interface Sample 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 
 

CS8392 OBJECT ORIENTED PROGRRAMMING 

 

{ 

final String name = “Shree”; 

void display(); 

} 

// A class that implements interface. 

public class testClass implements Sample 

{ 

public void display() 

{ 

System.out.println(“Welcome”); 

} 

public static void main (String[] args) 

{ 

testClass t = new testClass(); 

t.display(); 

System.out.println(name); 

} 

} 

Output: 

Welcome 

Shree 

Sample Code 3: 

In this example, Drawable interface has only one method. Its implementation is provided by 

Rectangle and Circle classes. 

interface Drawable 

{ 

void draw(); 

} 

class Rectangle implements Drawable 

{ 

public void draw() 

{ 

System.out.println(“Drawing rectangle”); 

} 

} 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 
 

CS8392 OBJECT ORIENTED PROGRRAMMING 

 

class Circle implements Drawable 

{ 

public void draw() 

{ 

System.out.println(“Drawing circle”); 

} 

} 

public class TestInterface 

{ 

public static void main(String args[]) 

{ 

Drawable d=new Circle(); 

d.draw(); 

} 

} 

Output: 

Drawing circle 

Nested Interface 

An interface can be declared as a member of a class or another interface. Such an inter- 

face is called a member interface or a nested interface. A nested interface can be declared as 

public, private, or protected. 

Sample Code: 

interface MyInterfaceA 

{ 

void display(); interface 

MyInterfaceB 

{ 

void myMethod(); 

} 

} 

public class NestedInterfaceDemo1 implements MyInterfaceA.MyInterfaceB 

{ 

public void myMethod() 

{ 

System.out.println(“Nested interface method”); 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 
 

CS8392 OBJECT ORIENTED PROGRRAMMING 

 

} 

public static void main(String args[]) 

{ 

MyInterfaceA.MyInterfaceB obj= new NestedInterfaceDemo1(); 

obj.myMethod(); 

} 

} 

Output: 

Nested interface method 


