Line Integral over a plane curve

An integral which is evaluated along a curve then it is called line integral.

Let C be the curve in same region of space described by a vector valued function

 $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ of a point (x, y, z) and let $\vec{F} = F_1\vec{i} + F_2\vec{j} + F_3\vec{k}$ be a continuous vector valued function defined along a curve C. Then the line integral \vec{F} over C is denoted by

 $\int_{c} \vec{F} \cdot d\vec{r}.$

A and B.

Work done by a Force

If $\vec{F}(x, y, z)$ is a force acting on a particle which moves along a given curve C, then $\int_{C} \vec{F} \cdot d\vec{r}$ gives the total work done by the force \vec{F} in the displacement along C.

Thus work done by force $\vec{F} = \int \vec{F} \cdot d\vec{r}$

Conservative force field

The line integral $\int_A^B \vec{F} \cdot d\vec{r}$ depends not only on the path C but also on the end points

If the integral depends only on the end points but not on the path C, then \vec{F} is said to be conservative vector field.

If \vec{F} is conservative force field, then it can be expressed as the gradient of some scalar function φ .

(ie)
$$\vec{F} = \nabla \varphi$$

 $\vec{F} = \nabla \varphi = \left(\vec{i} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z}\right)$ OPTIMIZE OUTSPREND
 $\vec{F} \cdot d\vec{r} = \left(\vec{i} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z}\right) \cdot (dx \vec{i} + dy \vec{j} + dz \vec{k})$
 $= \frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy + \frac{\partial \varphi}{\partial z} dz = \partial \varphi$
 $\int_{c} \vec{F} \cdot d\vec{r} = \int_{A}^{B} \partial \varphi$
 $= [\varphi]_{A}^{B}$
 $= \varphi[B] - \varphi[A]$
 \therefore work done by $\vec{F} = \varphi[B] - \varphi[A]$

Note:

If \vec{F} is conservative, then $\nabla \times \vec{F} = \nabla \times (\nabla \varphi) = \vec{0}$ and hence \vec{F} is irrotational.

Example: If $\vec{F} = 3xy\vec{\iota} - y^2\vec{j}$, evaluate $\int \vec{F} \cdot d\vec{r}$ where c is the curve $y = 2x^2$ from (0, 0)

to (1, 2).

Solution:

Given
$$\vec{F} = 3xy\vec{i} - y^2\vec{j}$$
 GINEE
 $d\vec{r} = dx\vec{i} + dy\vec{j}$
 $\vec{F} \cdot d\vec{r} = 3xy \, dx - y^2 \, dy$
Given C is $y = 2x^2$
 $\therefore dy = 4x \, dx$
Along C, x varies from 0 to 1.
 $\int_{c} \vec{F} \cdot d\vec{r} = \int_{0}^{1} 3x (2x^2) \, dx - 4x^4 (4x \, dx)$
 $= \int_{0}^{1} 6x^3 - 16x^5 \, dx$
 $= \left[6\frac{x^4}{4} - 16\frac{x^6}{6} \right]$
 $= \frac{6}{4} - \frac{16}{6} = -\frac{7}{6}$ units.

Example: Find the work done, when a force $\vec{F} = (x^2 - y^2 + x)\vec{\iota} - (2xy + y)\vec{j}$ moves a particle from the origin to the point (1, 1) along $y^2 = x$. Solution:

Given
$$\vec{F} = (x^2 - y^2 + x)\vec{i} - (2xy + y)\vec{j}$$

 $d\vec{r} = dx\vec{i} + dy\vec{j}$ VE OPTIMIZE OUTSPREAU

 $\vec{F} \cdot d\vec{r} = (x^2 - y^2 + x)dx - (2xy + y)dy$ Given $y^2 = x \Rightarrow 2ydy = dx$

Along the curve C, y varies from 0 to 1.

$$\int_{c} \vec{F} \cdot d\vec{r} = \int_{0}^{1} ((y^{2})^{2} - y^{2} + y^{2}) \, 2y dy - (2(y^{2})y + y) dy$$
$$= \int_{0}^{1} (2y^{5} - 2y^{3} + 2y^{3} - 2y^{3} - y) \, dy$$
$$= \int_{0}^{1} (2y^{5} - 2y^{3} - y) \, dy$$

$$= \left[2\frac{y^6}{6} - 2\frac{y^4}{4} - \frac{y^2}{2}\right]_0^1$$
$$= \frac{2}{6} - \frac{2}{4} - \frac{1}{2} = -\frac{2}{3}$$

Example: Find the work done in moving a particle in the force field

 $\vec{F} = 3x^2\vec{\iota} + (2xz - y)\vec{j} - z\vec{k}$ from t = 0 to t = 1 along the curve $x = 2t^2$, $y = t, z = 4t^3$. Solution:

Given
$$\vec{F} = 3x^2\vec{i} + (2xz - y)\vec{j} - z\vec{k}$$

 $d\vec{r} = dx\vec{i} + dy\vec{j} + dz\vec{k}$
 $\vec{F} \cdot d\vec{r} = 3x^2dx + (2xz - y)dy - zdz$
Given $x = 2t^2$, $y = t$, $z = 4t^3$
 $dx = 4tdt$, $dy = dt$, $dz = 12t^2dt$
 $\int_c \vec{F} \cdot d\vec{r} = \int_0^1 48t^5dt + (16t^5 - t)dt - 48t^5dt$
 $= \int_0^1 (16t^5 - t)dt$
 $= \left[\frac{16t^6}{6} - \frac{t^2}{2}\right]_0^1 = \frac{16}{6} - \frac{1}{2} = \left[\frac{13}{6}\right]$

Example: If $\vec{F} = (3x^2 + 6y)\vec{i} + 14yz\vec{j} + 20xz^2\vec{k}$, evaluate $\int \vec{F} \cdot d\vec{r}$ from (0, 0, 0) to

(1, 1, 1) along the curve x = t, $y = t^2$, $z = t^3$. Solution:

Given
$$\vec{F} = (3x^2 + 6y)\vec{\iota} + 14yz\vec{\jmath} + 20xz^2\vec{k}$$

$$d\vec{r} = dx\vec{i} + dy\vec{j} + dzk$$

 $\vec{F} \cdot d\vec{r} = (3x^2 + 6y)dx + 14yzdy + 20xz^2dz = 001$ Given x = t, $y = t^2$, $z = t^3$

$$dx = dt, \quad dy = 2tdt, \quad dz = 3t^2dt$$

The point (0, 0, 0) to (1, 1, 1) on the curve correspond to t = 0 and t = 1.

$$\int_{c} \vec{F} \cdot d\vec{r} = \int_{0}^{1} (3t^{2} + 6t^{2})dt + 14t^{5}(2t \, dt) + 20t^{7}(3t^{2})dt$$
$$= \int_{0}^{1} (9t^{2} + 28t^{6} + 60t^{9}) \, dt$$
$$= \left[9\frac{t^{3}}{3} + 28\frac{t^{7}}{7} + 60\frac{t^{9}}{9}\right]_{0}^{1}$$

$$= \frac{9}{3} + \frac{28}{7} + \frac{60}{10} = 3 + 4 + 6 = 13$$
 units.

Example: Find $\int_{c} \vec{F} \cdot d\vec{r}$ where c is the circle $x^2 + y^2 = 4$ in the xy plane where

$$\vec{F} = (2xy + z^3)\vec{\iota} + x^2\vec{J} + 3xz^2\vec{k}.$$

Solution:

Given
$$\vec{F} = (2xy + z^3)\vec{i} + x^2\vec{j} + 3xz^2\vec{k}$$

In xy plane $z = 0 \Rightarrow dz = 0$
 $d\vec{r} = dx\vec{i} + dy\vec{j} + dz\vec{k}$
 $\vec{F} \cdot d\vec{r} = 2xydx + x^2dy$
Given C is $x^2 + y^2 = 4$
The parametric form of circle is
 $x = 2\cos\theta$, $y = 2\sin\theta$
 $dx = -2\sin\theta d\theta$, $dy = 2\cos\theta d\theta$
And θ varies from 0 to 2π
 $\int_{c} \vec{F} \cdot d\vec{r} = \int_{0}^{2\pi} [2(2\cos\theta)(2\sin\theta)] (+2\sin\theta d\theta) + (2\cos\theta)^2 2\cos\theta d\theta$
 $= \int_{0}^{2\pi} -16\cos\theta \sin^2\theta + 8\cos^3\theta d\theta$
 $= \int_{0}^{2\pi} -16\cos\theta (1 - \cos^2\theta) + 8\cos^3\theta d\theta$
 $= -16\int_{0}^{2\pi}\cos\theta d\theta + 24\int_{0}^{2\pi}\cos^3\theta d\theta$
 $= -16\int_{0}^{2\pi}\cos\theta d\theta + 24\int_{0}^{2\pi}\cos^3\theta d\theta$
 $= 16 [\sin\theta]_{0}^{2\pi} + \frac{24}{4} [3\sin\theta + \frac{\sin^2\theta}{3}]_{0}^{2\pi}$

Example: State the physical interpretation of the line integral $\int_A^B \vec{F} \cdot d\vec{r}$. Solution:

Physically $\int_{A}^{B} \vec{F} \cdot d\vec{r}$ denotes the total work done by the force \vec{F} , displacing a particle from A to B along the curve C.

Example: If $\vec{F} = (4xy - 3x^2z^2)\vec{\iota} + 2x^2\vec{j} - 2x^2z\vec{k}$, check whether the integral

$\int \vec{F} \cdot d\vec{r}$ is independent of the path C.

Solution:

Given
$$\vec{F} = (4xy - 3x^2z^2)\vec{i} + 2x^2\vec{j} - 2x^2z\vec{k}$$

 $d\vec{r} = dx\vec{i} + dy\vec{j} + dz\vec{k}$
 $\vec{F} \cdot d\vec{r} = (4xy - 3x^2z^2)dx + 2x^2dy - 2x^2zdz$
Then $\int_c \vec{F} \cdot d\vec{r}$ is independent of path C if $\nabla \times \vec{F} = 0$
 $\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 4xy - 3x^2z^2 & 2x^2 & -2x^3z \end{vmatrix}$
 $= \vec{i}(0-0) - \vec{j}(-6x^2z + 6x^2z) + \vec{k}(4x - 4x)$
 $= \vec{0}$

Hence the line integral is independent of path,

Example: Show that $\vec{F} = x^2 \vec{\iota} + y^2 \vec{j} + z^2 \vec{k}$ is a conservative vector field. Solution:

O

If \vec{F} is conservative, then $\nabla \times \vec{F} = \vec{0}$.

Now,
$$\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 & y^2 & z^2 \end{vmatrix}$$

$$= \vec{i}(0-0) - \vec{j}(0-0) + \vec{k}(0-0)$$
$$= \vec{0}$$

 $\Rightarrow \vec{F}$ is a conservative vector field.