
ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

2. OBJECT-BASED DATABASES

 An object-oriented database system is a database system that natively supports an

object-oriented type system, and allows direct access to data from an object-oriented

programming language using the native type system of the language.

Complex Data Types

 Traditional database applications have conceptually simple datatypes. The basic data

items are records that are fairly small and whose fields are atomic.

 In recent years, demand has grown for ways to deal with more complex data types.

Consider, for example, addresses. While an entire address could be viewed as an atomic data

item of type string, this view would hide details such as the street address, city, state, and postal

code, which could be of interest to queries.

 On the other hand, if an address were represented by breaking it into the components

(street address, city, state, and postal code), writing queries would be more complicated since

they would have to mention each field. A better alternative is to allow structured datatypes that

allow a type address with subparts street address, city, state, and postal code.

Structured Types

 Structured types allow composite attributes of E-R designs to be represented directly. For

instance, we can define the following structured type to represent a composite attribute name

with component attribute firstname and lastname:

 create type Name as

 (firstname varchar(20),

 lastname varchar(20))

 final;

Such types are called user-defined types in SQL. The final and not final specifications are related

to subtyping.

 The components of a composite attribute can be accessed using a “dot” notation; for

instance, name. firstname returns the firstname component of the name attribute. An access to

attribute name would return a value of the structured type Name.

 We can also create a table whose rows are of a user-defined type. For example, we could

define a type Person Type and create the table person as follows

 create type PersonType as (

 name Name,

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

 address Address,

 dateOfBirth date)

 not final

 create table person of PersonType;

Type Inheritance

 Suppose that we have the following type definition for people:

 create type Person

 (name varchar(20),

 address varchar(20));

We may want to store extra information in the database about people who are students, and

about people who are teachers. Since students and teachers are also people, we can use

inheritance to define the student and teacher types in SQL:

 create type Student

 under Person

 (degree varchar(20),

 department varchar(20));

 create type Teacher

 under Person

 (salary integer,

 department varchar(20));

Both Student and Teacher inherit the attributes of Person—namely, name and address. Student

and Teacher are said to be subtypes of Person, and Person is a supertype of Student, as well as

of Teacher.

Table Inheritance

 Sub tables in SQL correspond to the E-R notion of specialization/generalization. For

instance, suppose we define the people table as follows:

 create table people of Person;

We can then define tables students and teachers as sub tables of people, as follows:

 create table students of Student

 under people;

 create table teachers of Teacher

 under people;

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

The types of the sub tables (Student and Teacher in the above example) are subtypes of the type

of the parent table (Person in the above example). As a result, every attribute present in the

table people is also present in the sub tables students and teachers.

Array and Multiset Types in SQL

 SQL supports two collection types: arrays and multisets

A multiset is an unordered collection, where an element may occur multiple times. Multisets are

like sets, except that a set allows each element to occur at most once.

 Suppose we wish to record information about books, including a set of keywords for each

book. Suppose also that we wished to store the names of authors of a book as an array; unlike

elements in a multiset, the elements of an array are ordered, so we can distinguish the first

author from the second author, and so on. The following example illustrates how these array and

multiset-valued attributes can be defined in SQL:

 create type Publisher as

 (name varchar(20),

 branch varchar(20));

 create type Book as

 (title varchar(20),

 Autho_arrray varchar(20) array [10],

 Pub_date date, publisher Publisher, keyword_set varchar(20) multiset);

 create table books of Book;

The first statement defines a type called Publisher with two components: a name and a branch.

The second statement defines a structured type Book that contains a title, an author array, which

is an array of up to 10 author names, a publication date, a publisher (of type Publisher), and a

multiset of keywords. Finally, a table books containing tuples of type Book is created.

Object-Identity and Reference Types in SQL

 Object-oriented languages provide the ability to refer to objects. An attribute of a type

can be a reference to an object of a specified type. For example, in SQL we can define a type

Department with a field name and a field head that is a reference to the type Person, and a table

departments of type Department, as follows:

 create type Department (

 name varchar(20),

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8492-DATABASE MANAGEMENT SYSTEMS

 head ref(Person) scope people);

 create table departments of Department;

Here, the reference is restricted to tuples of the table people. The restriction of the scope of a

reference to tuples of a table is mandatory in SQL, and it makes references behave like foreign

keys.

2.1 Object-relational Features

 Object-relational database systems are basically extensions of existing relational

database systems. Changes are clearly required at many levels of the database system. However,

to minimize changes to the storage-system code (relation storage, indices, etc.), the complex

datatypes supported by object-relational systems can be translated to the simpler type system

of relational databases.

 Sub tables can be stored in an efficient manner, without replication of all inherited fields,

in one of two ways:

 Each table stores the primary key (which may be inherited from a parent table)

and the attributes that are defined locally. Inherited attributes (other than the

primary key) do not need to be stored, and can be derived by means of a join with

the super table, based on the primary key.

 Each table stores all inherited and locally defined attributes. When a tuple is

inserted, it is stored only in the table in which it is inserted, and its presence is

inferred in each of the super tables. Access to all attributes of a tuple is faster,

since a join is not required.

