

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

LAMPORT’S ALGORITHM

 Lamport’s Distributed Mutual Exclusion Algorithm is a permission based algorithm

proposed by Lamport as an illustration of his synchronization scheme for distributed

systems. In permission based timestamp is used to order critical section requests and

to resolve any conflict between requests.

 In Lamport’s Algorithm critical section requests are executed in the increasing order

of timestamps i.e a request with smaller timestamp will be given permission to

execute critical section first than a request with larger timestamp.

 Three type of messages (REQUEST, REPLY and RELEASE) are used and

communication channels are assumed to follow FIFO order.

 A site send a REQUEST message to all other site to get their permission to enter

critical section.

 A site send a REPLY message to requesting site to give its permission to enter the

critical section.

 A site send a RELEASE message to all other site upon exiting the critical section.

 Every site Si, keeps a queue to store critical section requests ordered by their

timestamps. request_queuei denotes the queue of site Si.

 A timestamp is given to each critical section request using Lamport’s logical clock.

 Timestamp is used to determine priority of critical section requests. Smaller

timestamp gets high priority over larger timestamp. The execution of critical section

request is always in the order of their timestamp.

Fig: Lamport’s distributed mutual exclusion algorithm

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

To enter Critical section:

 When a site Si wants to enter the critical section, it sends a request message

Request(tsi, i) to all other sites and places the request on request_queuei. Here, Tsi

denotes the timestamp of Site Si.

 When a site Sj receives the request message REQUEST(tsi, i) from site Si, it returns a

timestamped REPLY message to site Si and places the request of site Si on

request_queuej

To execute the critical section:

 A site Si can enter the critical section if it has received the message with timestamp

larger than (tsi, i) from all other sites and its own request is at the top of

request_queuei.

To release the critical section:

 When a site Si exits the critical section, it removes its own request from the top of its

request queue and sends a timestamped RELEASE message to all other sites. When a

site Sj receives the timestamped RELEASE message from site Si, it removes the

request of Sia from its request queue.

Correctness

Theorem: Lamport’s algorithm achieves mutual exclusion.

Proof: Proof is by contradiction.

 Suppose two sites Si and Sj are executing the CS concurrently. For this to happen

conditions L1 and L2 must hold at both the sites concurrently.

 This implies that at some instant in time, say t, both Si and Sj have their own requests

at the top of their request queues and condition L1 holds at them. Without loss of

generality, assume that Si ’s request has smaller timestamp than the request of Sj .

 From condition L1 and FIFO property of the communication channels, it is clear that

at instant t the request of Si must be present in request queuej when Sj was executing

its CS. This implies that Sj ’s own request is at the top of its own request queue when

a smaller timestamp request, Si ’s request, is present in the request queuej – a

contradiction!

Theorem: Lamport’s algorithm is fair.

Proof: The proof is by contradiction.

 Suppose a site Si ’s request has a smaller timestamp than the request of another site Sj

and Sj is able to execute the CS before Si .

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 For Sj to execute the CS, it has to satisfy the conditions L1 and L2. This implies that

at some instant in time say t, Sj has its own request at the top of its queue and it has

also received a message with timestamp larger than the timestamp of its request from

all other sites.

 But request queue at a site is ordered by timestamp, and according to our assumption

Si has lower timestamp. So Si ’s request must be placed ahead of the Sj ’s request in

the request queuej . This is a contradiction!

Message Complexity:

Lamport’s Algorithm requires invocation of 3(N – 1) messages per critical section execution.

These 3(N – 1) messages involves

 (N – 1) request messages

 (N – 1) reply messages

 (N – 1) release messages

Drawbacks of Lamport’s Algorithm:

 Unreliable approach: failure of any one of the processes will halt the progress of

entire system.

 High message complexity: Algorithm requires 3(N-1) messages per critical section

invocation.

Performance:

 Synchronization delay is equal to maximum message transmission time. It requires 3(N –

1) messages per CS execution. Algorithm can be optimized to 2(N – 1) messages by omitting

the REPLY message in some situations.

