
 ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

 TOTAL ORDER

Centralized Algorithm for total ordering

Each process sends the message it wants to broadcast to a centralized process,

which relays all the messages it receives to every other process over FIFO channels.

(1) When process Pi wants to multicasts a message M to group G: (1a) send M(i, G)

to central coordinator

(2) When M(i, G) arrives from Pi at the central coordinator (2a) send M(i, G) to all

members of the group G.

(3) When M(i, G) arrives at pj from the central coordinator (3a) deliver M(i, G) to the

application.

Complexity: Each message transmission takes two message hops and exactly n messages

in a system of n processes.

Drawbacks: A centralized algorithm has a single point of failure and congestion, and is

not an elegant solution.

Three phase distributed algorithm

Three phases can be seen in both sender and receiver side.

Sender side

Phase 1

 In the first phase, a process multicasts the message M with a locally unique tag and

the local timestamp to the group members.

Phase 2

 The sender process awaits a reply from all the group members who respond with

a tentative proposal for a revised timestamp for that message M.

For each pair of processes Pi and Pj and for each pair of messages Mx and My that are

delivered to both the processes, Pi is delivered Mx before My if and only if Pj is delivered

Mxbefore My.

ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

CS8603 DISTRIBUTED SYSTEMS

 The await call is non-blocking.

Phase 3

 The process multicasts the final timestamp to the group.

Record Q_entry

M: int; // the application message

tag: int; // unique message identifier

sender_id: int; // sender of the message

timestamp: int; // tentative timestamp assigned to message

deliverable: Boolean // whether message is ready for delivery

(local variables)

queue of Q_entry: temp_Q, delivery_Q

int: clock // Used as a variant of Lamport’s scalar clock

int: priority // Used to track the highest proposed timestamp (message types)

REVISE_TS(M, i, tag, ts)

// Phase 1 message sent by Pi, with initial timestamp ts

PROPOSED_TS(j, i, tag, ts)

// Phase 2 message sent by Pj, with revised timestamp Pi

FINAL_TS(i, tag, ts) // Phase 3 message sent by Pi, with final timestamp

(1) When process Pi wants to multicast a message M with a tag tag:

(1a) clock clock + 1;

(1b) send REVISE_TS(M, I, tag, clock) to all processes;

(1c) temp_ts 0

(1d) await PROPOSED_TS(j, i, tag, tsj) from each process Pj;

(1e) j N , do temp_ts max(temp_ts, tsj);

(1f) send FINAL_TS(i, tag, temp_ts) to all processes;

(1g) clock max(clock, temp_ts)

Fig: Sender side of three phase distributed algorithm

 ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY

 CS8603 DISTRIBUTED SYSTEMS

Receiver Side

Phase 1

 The receiver receives the message with a tentative timestamp. It updates the

variable priority that tracks the highest proposed timestamp, then revises the

proposed timestamp to the priority, and places the message with its tag and the

revised timestamp at the tail of the queue temp_Q. In the queue, the entry is marked

as undeliverable.

Phase 2

 The receiver sends the revised timestamp back to the sender. The receiver then

waits in a non-blocking manner for the final timestamp.

Phase 3

 The final timestamp is received from the multicaster. The corresponding message

entry in temp_Q is identified using the tag, and is marked as deliverable after the

revised timestamp is overwritten by the final timestamp.

 The queue is then resorted using the timestamp field of the entries as the key. As

the queue is already sorted except for the modified entry for the message under

consideration, that message entry has to be placed in its sorted position in the queue.

 If the message entry is at the head of the temp_Q, that entry, and all consecutive

subsequent entries that are also marked as deliverable, are dequeued from temp_Q,

and enqueued in deliver_Q.

Complexity

This algorithm uses three phases, and, to send a message to n − 1 processes, it uses

3(n - 1) messages and incurs a delay of three message hops

	TOTAL ORDER
	Three phase distributed algorithm
	Sender side
	Phase 1
	Phase 2
	Phase 3
	Fig: Sender side of three phase distributed algorithm
	Phase 2 (1)
	Phase 3 (1)
	Complexity

