
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

OCS551-SOFTWARE ENGINEERING

UNIT-3

What is the Software Requirements Specification (SRS)?

A software requirements specification (SRS) is a document explaining how and what the

software/system will do. It defines the features and functionality that the product requires

to satisfy all stakeholders’ (business, users) needs. A standard SRS includes:

• A goal/purpose

• A summary of the whole process

• Specific Requirements

The best SRS documents describe how the program communicates with the embedded

hardware or specific software with unique coding culture. The chosen real-life users also

account for nice SRS documents.

Important thing to Note

The fine line between Software Requirements Specification and System Requirements

Specification:

A Software Requirements Specification (SRS) adds in-depth explanations of the software to

be built.

A System Requirements specification (SyRS) gathers information on the overall system

requirements.

Often the “software” and the “system” are used as SRS interchangeably. However, a

specification for software needs more detailed information than the specification for

the system. In this blog, we will be focusing on Software Requirements Specifications.

Before we dive into the main content, a detailed format of making SRS document is provided

with the (drive link), please refer the document if you need further guidance on the subject

matter.

What does an SRS document contain?

A typical SRS document describes all the software requirements and sometimes even

contains a collection of use cases that describe the user interactions needed by the software.

bm c blog on SR S

https://drive.google.com/file/d/1JkQsdydpdwrG1Amfg6VdC5IA1BgdAIxq/view?usp=sharing
https://www.bmc.com/blogs/software-requirements-specification-how-to-write-srs-with-examples/
https://www.bmc.com/blogs/software-requirements-specification-how-to-write-srs-with-examples/
https://www.bmc.com/blogs/software-requirements-specification-how-to-write-srs-with-examples/
https://www.bmc.com/blogs/software-requirements-specification-how-to-write-srs-with-examples/

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

OCS551-SOFTWARE ENGINEERING

It defines the purpose of a software project, provides the overall definition and specifications

of its features.

In general, SRS documents contain three kinds of program requirements:

• Functional specifications that include measures to be performed by the system

• Non-functional requirements determining the software system’s performance attributes

• Domain requirements that are device limits on the service domain

Note: If want to know more about Requirement Analysis, please go through my previous blog

on this subject matter with the following link.

What is Requirement Analysis in software engineering and Why is it so important? As we

know, Requirement Analysis is derived from two words i.e. requirement and analysis

where requirement refers to… medium.com

Qualities of a good SRS Document

There must be certain qualities in a well written SRS document, thus it does not cause errors

in the development process. The following qualities include:

Correctness

The SRS document is only right if the program meets the required specifications. Thus, no

fixed method is given to guarantee the consistency of the SRS, but it can be used to make

sure that it stays in line with other superior requirements or documents. An SRS document is

said as correct if it covers all the requirements that are actually expected from the system.

Users can also decide through feedback whether the SRS represents their needs.

Unambiguousness

As a software development project is based on an SRS document, all the declarations must be

simple, concise, and in-depth.

No amphiboles, ambiguous adverbs, words suggesting multiple significance, etc. should be

present.

A glossary to clarify each word at the end of the document is often useful. Completeness

All the program specifications and answers to input data (valid or invalid) are provided in a

complete SRS.

https://medium.com/@positive.stud/what-is-requirement-analysis-in-software-engineering-and-why-is-it-so-important-58fdd8b5c33b
https://medium.com/@positive.stud/what-is-requirement-analysis-in-software-engineering-and-why-is-it-so-important-58fdd8b5c33b
https://medium.com/@positive.stud/what-is-requirement-analysis-in-software-engineering-and-why-is-it-so-important-58fdd8b5c33b
https://medium.com/@positive.stud/what-is-requirement-analysis-in-software-engineering-and-why-is-it-so-important-58fdd8b5c33b
https://medium.com/@positive.stud/what-is-requirement-analysis-in-software-engineering-and-why-is-it-so-important-58fdd8b5c33b
https://medium.com/@positive.stud/what-is-requirement-analysis-in-software-engineering-and-why-is-it-so-important-58fdd8b5c33b

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

OCS551-SOFTWARE ENGINEERING

Consistency

As mentioned above, the SRS must be linked to other high-level documents such as the

system requirements specifications.

An SRS document must also be reliable with itself, which ensures that the details it contains

cannot be changed.

Ranking for importance and/or stability rating

All software requirements are not equally important, some are crucial, and others are less

important add-ins.

An SRS document must assess the importance and/or stability of the features of the program

in order to enable development teams to complete each task in the right order.

Verifiability

The declarations in the document need to be confirmed, and if the program meets the needs,

it can be checked.

This is only attributable to the uncertainty of an SRS, which cannot be supported by

unambiguous statements.

Modifiability

Because the process of software creation can change dramatically, software needs can

change.

An SRS must be versatile in structure and style, so it can be easily changed if needed.

Traceability

The root of each software requirement must be transparent and future documentation should

be easy to reference, which means that the life cycle of each function must be recognizable.

Understandable by Consumers

Here, consumers refer to the end-users who may be an expert in their specific domain.

However, they might not have expertise in Computer Science. Therefore, it is very crucial to

avoid using formal notations and symbols to make the document as much understandable as

possible. And thus, the language used in the document should be kept easy to read and clear

to avoid any miscommunications or confusion.

Previous

Home/Software Testing Fundamentals

Software testing is an investigation conducted to provide stakeholders with information about

the quality of the product or service under test. Software testing can also provide an

objective, independent view of the software to allow the business to appreciate and

understand the risks of software implementation. In this video we describe the fundamentals

of software testing.

Different types of Software Testing processes are described below:

• Unit Testing

It is a method by which individual units of source code are tested to determine if they

are fit for use.

https://www.collegenote.net/curriculum/software-engineering-csit/52/301/
https://www.360logica.com/blog
https://www.360logica.com/blog

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

OCS551-SOFTWARE ENGINEERING

• Integration Testing

Here individual software modules are combined and tested as a group.

• Functionality Testing

It is a type of black box testing that bases its test cases on the specifications of the

software component under test.

• Usability Testing

It is a technique used to evaluate a product by testing it on users.

• System Testing

It is testing conducted on a complete, integrated system to evaluate the system’s

compliance with its specified requirements.

• Performance Testing

It is testing that is performed, to determine how fast some aspect of a system performs

under a particular workload.

• Load Testing

It refers to the practice of modeling the expected usage of a software program by

simulating multiple users accessing the program concurrently.

• Stress Testing

It is a form of testing that is used to determine the stability of a given system or entity.

What is Glass Box Testing?

Glass box testing is a testing technique that examines the program structure and derives test

data from the program logic/code. The other names of glass box testing are clear box testing,

open box testing, logic driven testing or path driven testing or structural testing.

Glass Box Testing Techniques:

• Statement Coverage - This technique is aimed at exercising all programming

statements with minimal tests.

• Branch Coverage - This technique is running a series of tests to ensure that all

branches are tested at least once.

• Path Coverage - This technique corresponds to testing all possible paths which means

that each statement and branch is covered.

Calculating Structural Testing Effectiveness:

Statement Testing = (Number of Statements Exercised / Total

Number of Statements) x 100 %

Branch Testing = (Number of decisions outcomes tested / Total

Number of decision Outcomes) x 100 %

Path Coverage = (Number paths exercised / Total Number of paths in the program) x 100 %

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

OCS551-SOFTWARE ENGINEERING

Advantages of Glass Box Testing:

• Forces test developer to reason carefully about implementation.

• Reveals errors in "hidden" code.

• Spots the Dead Code or other issues with respect to best programming practices.

Disadvantages of Glass Box Testing:

• Expensive as one has to spend both time and money to perform white box testing.

• Every possibility that few lines of code is missed accidentally.

• In-depth knowledge about the programming language is necessary to perform white box

testing.

