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ENERGY STORING ELEMENTS AND ENGINE COMPONENTS 

CHAPTER 2 

 

Energy Stored in Helical Springs of Circular Wire 

We know that the springs are used for storing energy which is equal to the work 

done on it by some external load. 

Let   W = Load applied on the spring, and 

δ = Deflection produced in the spring due to the load W. 

Assuming that the load is applied gradually, the energy stored in a spring is, 

U = 
1

2
 W.δ 

We have already discussed that the maximum shear stress induced in the spring wire, 

τ = 
8 W.D

π d3
 K 

W = 
τ π d3

8.K.D
  

We know that deflection of the spring, 

δ = 
8.W.D3.n

G .d4
 

δ = 
8(.

τ π d3

8.K.D
) .D3.n

G .d4
 

δ = 
πτD2.n

K.d.G
 

Substituting the values of W and δ in equation (i), we have 

U = 
1

2
 
τ π d3

8.K.D
 × 

πτD2.n

K.d.G
 

U = 
τ2

4 K2.G
(πD.n)(

π

4
× d2) 

U = 
τ2

4 K2.G
 × V 

where  V = Volume of the spring wire  

    = Length of spring wire × Cross-sectional area of spring wire 
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V = (πD.n)(
π

4
× d2) 

Problem 2.1 

A rail wagon of mass 20 tonnes is moving with a velocity of 2 m/s. It is brought to rest 

by two buffers with springs of 300 mm diameter. The maximum deflection of springs is 

250 mm. The allowable shear stress in the spring material is 600 MPa. Design the spring 

for the buffers. 

Given Data:  

m = 20 t = 20 000 kg  

v = 2 m/s  

D = 300 mm 

δ = 250 mm  

τ = 600 MPa = 600 N/mm2 

1. Diameter of the spring wire 

Let   d =Diameter of the spring wire. 

We know that kinetic energy of the wagon 

= 
1

2
mv2 

= 
1

2
(20000)22 

= 40 × 106 N-mm 

Let W be the equivalent load which when applied gradually on each spring causes a 

deflection of 250 mm. Since there are two springs, therefore 

Energy stored in the springs 

U = 
1

2
 W.δ × 2  

U = W.δ  

U = 250 W N-mm 

From equations (i) and (ii), we have 
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W = 40 × 106 / 250  

∴W = 160 × 103 N 

We know that torque transmitted by the spring, 

T = W × 
𝐷

2
  

T =1600×103 × 
300

2
 

T = 24 × 106 N-mm. 

We also know that torque transmitted by the spring (T), 

24 × 106 = 
𝜋

16
 × τ × d3 

24 × 106 = 
𝜋

16
 × 600 × d3 

24 × 106 = 117.8 d3 

d3 = 24 × 106 / 117.8  

d3 = 203.7 × 103 or  

d = 58.8 say 60 mm. 

2. Number of turns of the spring coil 

Let   n = Number of active turns of the spring coil. 

We know that the deflection of the spring (δ), 

δ = 
8.W.D3.n

G .d4
 

δ = 
8×160 ×103×3003.n

84×103  604
  

 ... (Taking G = 84 MPa = 84 × 103 N/mm2) 

∴ n = 250 / 31.7  

n = 7.88 say 8. 

Assuming square and ground ends, total number of turns, 

n' = n + 2  

n’= 8 + 2  



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

ME8593 DESIGN OF MACHINE ELEMENTS 

n’= 10. 

3. Free length of the spring 

We know that free length of the spring, 

LF = n’. d + δ + 0.15 δ  

LF= 10 × 60 + 250 + 0.15 × 250  

LF = 887.5 mm. 

4. Pitch of the coil 

We know that pitch of the coil 

p = 
Free length

n’−1
 

p = 
887.5

10−1
 

p = 98.6 mm. 

 

Stress and Deflection in Helical Springs of Non-Circular Wire 

The helical springs may be made of non-circular wire such as rectangular or square wire, 

in order to provide greater resilience in a given space. However, these springs have the 

following main disadvantages: 

1. The quality of material used for springs is not so good. 

2. The shape of the wire does not remain square or rectangular while 

forming helix, resulting in trapezoidal cross-sections. It reduces the 

energy absorbing capacity of the spring. 

3. The stress distribution is not as favourable as for circular wires. 

But this effect is negligible where loading is of static nature. 

For springs made of rectangular wire, as shown in Fig. 2.1, the maximum shear stress is 

given by 

τ = K × 
W.D (1.5t+0.9b)

b2t2
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Fig 2.1 Spring of rectangular wire. 

[Source: “A Textbook of Machine Design by R.S. Khurmi J.K. Gupta, Page: 852] 

 

This expression is applicable when the longer side (i.e. t > b) is parallel to the axis of the 

spring. But when the shorter side (i.e. t < b) is parallel to the axis of the spring, then 

maximum shear stress, 

τ = K × 
W.D (1.5t+0.9b)

b2t2
 

and deflection of the spring, 

δ = 
2.45W.D3.n

Gb3 (t−0.56b)
 

For springs made of square wire, the dimensions b and t are equal. Therefore, the 

maximum shear stress is given by 

τ = K × 
2.4 W.D

b3
 

and deflection of the spring, 

δ = 
5.568W.D3.n

Gb4 
 

δ = 
5.568W.C3.n

Gb 
            …..(C = 

D

b
 ) 

where   b = Side of the square. 

 

Helical Springs Subjected to Fatigue Loading 

The helical springs subjected to fatigue loading are designed by using the 

Soderberg line method. The spring materials are usually tested for torsional endurance 
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O Q   
1 

e / 2 D B 

m 

 
y 

strength under a repeated stress that varies from zero to a maximum. Since the springs 

are ordinarily loaded in one direction only (the load in springs is never reversed in nature), 

therefore a modified Soderberg diagram is used for springs, as shown in Fig. 2.2.  

 

 

     

Fig 2.2 Modified Soderberg method for helical springs. 

[Source: “A Textbook of Machine Design by R.S. Khurmi J.K. Gupta, Page: 854] 

The endurance limit for reversed loading is shown at point A where the mean shear 

stress is equal to τe / 2 and the variable shear stress is also equal to τe / 2. A line drawn 

from A to B (the yield point in shear, τy) gives the Soderberg’s failure stress line. If a 

suitable factor of safety (F.S.) is applied to the yield strength (τy), a safe stress line CD 

may be drawn parallel to the line AB, as shown in Fig. 2.1. Consider a design point P on 

the line CD. Now the value of factor of safety may be obtained as discussed below 

From similar triangles PQD and AOB, we have 

PQ

QD
 = 

OA

OB
 

PQ

O1D−O1Q
 = 

OA

O1B−O1O
 

τv
τy

F.S
−τm

 = 

τe
2

τy−
τe
2

 = 
τe

2τy−τe
 

2 τv. τy – τv. τe = 
τeτy

F.S
 – τm.τe 

τeτy

F.S
  = 2 τv.τy – τv.τe + τm.τe 

Dividing both sides by τe.τy and rearranging, we have 

V
ar

ia
b

le
 s

tr
es

s 
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1

F.S
 = 

τm− τv

τy
 + 

2τv

τe
 

 

Problem 2.2 

A helical compression spring made of oil tempered carbon steel, is subjected to a load 

which varies from 400 N to 1000 N. The spring index is 6 and the design factor of safety 

is 1.25. If the yield stress in shear is 770 MPa and endurance stress in shear is 350 MPa, 

find: 1. Size of the spring wire, 2. Diameters of the spring, 3. Number of turns of the 

spring, and 4. Free length of the spring. 

The compression of the spring at the maximum load is 30 mm. The modulus of rigidity 

for the spring material may be taken as 80 kN/mm2. 

Given Data:  

Wmin = 400 N  

Wmax = 1000 N  

C = 6  

F.S. = 1.25  

τy = 770 MPa = 770 N/mm2  

τe = 350 MPa = 350 N/mm2  

δ = 30 mm  

G = 80 kN/mm2 = 80 × 103 N/mm2 

1. Size of the spring wire 

Let   d = Diameter of the spring wire, and 

D = Mean diameter of the spring = C.d = 6 d      ... (D/d = C = 6) 

We know that the mean load, 

Wm = 
Wmax+ Wmin

2
 = 

1000+400

2
  

Wm = 700 N 

and variable load,  
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Wv = 
Wmax− Wmin

2
 = 

1000−400

2
  

Wv = 300 N 

Shear stress factor, 

KS = 1 + 
1

2𝐶
 = 1 + 

1

2×6
  

KS = 1.083 

Wahl’s stress factor, 

K = 
4C−1

4C−4
 + 

0.615

C
  

K = 
4×6−1

4×6−4
 + 

0.615

6
 

K = 1.2525 

We know that mean shear stress, 

τm = 
8 Wm.D

π d3
 KS 

τm = 
8 × 700× 6d

π d3
 1.083 

τm = 
11582

d2
 N/mm2 

and variable shear stress, 

τv = 
8 Wv.C

π d2
 K 

τv = 
8 ×300×6d

π d2
 1.2525 

τv = 
5740

d2
 N/mm2 

We know that 

1

F.S
 = 

τm− τv

τy
 + 

2τv

τe
 

1

1.25
 = 

11582

d2 − 
5740

d2

770
 + 

2 ×
5740

d2

350
 

1

1.25
 = 

7.6

d2
 + 

32.8

d2
 =  

40.4

d2
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d2 = 1.25 × 40.4 = 50.5 or  

∴d = 7.1 mm. 

2. Diameters of the spring 

We know that mean diameter of the spring, 

D = C.d = 6 × 7.1  

D = 42.6 mm. 

Outer diameter of the spring, 

Do = D + d = 42.6 + 7.1  

Do = 49.7 mm. 

and inner diameter of the spring, 

Di = D – d = 42.6 – 7.1  

Di = 35.5 mm. 

3. Number of turns of the spring 

Let   n = Number of active turns of the spring. 

We know that deflection of the spring (δ), 

30 = 
8W.D3.n

G.d4
 

30 = 
8×1000 × 42.63.n

80× 103 ×7.14
 

n = 30 / 3.04  

∴ n = 9.87 say 10. 

Assuming the ends of the spring to be squared and ground, the total number of turns of 

the spring, 

n' = n + 2 = 10 + 2  

n’= 12. 

4. Free length of the spring 

We know that free length of the spring, 
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LF = n’. d + δ + 0.15 δ  

LF = 12 × 7.1 + 30 + 0.15 × 30 mm 

LF = 119.7 say 120 mm 

 

Springs in Series 

Consider two springs connected in series as shown in Fig. 2.3. 

Let   W = Load carried by the springs, 

δ1 = Deflection of spring 1, 

δ2 = Deflection of spring 2, 

k1 = Stiffness of spring 1 = W / δ1, and 

k2 = Stiffness of spring 2 = W / δ2 

 

Fig 2.3 Springs in series. 

[Source: “A Textbook of Machine Design by R.S. Khurmi J.K. Gupta, Page: 856] 

 

A little consideration will show that when the springs are connected in series, then the 

total deflection produced by the springs is equal to the sum of the deflections of the 

individual springs. 

∴ Total deflection of the springs, 

δ = δ1 + δ2 

W

k
 = 

W

k1
 + 

W

k2
 

1

k
 = 

1

k1
 + 

1

k2
 

where   k = Combined stiffness of the springs. 
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Springs in Parallel 

Consider two springs connected in parallel as shown in Fig 2.4. 

Let   W = Load carried by the springs, 

W1 = Load shared by spring 1, 

W2 = Load shared by spring 2, 

k1 = Stiffness of spring 1, and 

k2 = Stiffness of spring 2. 

 

Fig 2.4 Springs in parallel. 

[Source: “A Textbook of Machine Design by R.S. Khurmi J.K. Gupta, Page: 856] 

 

A little consideration will show that when the springs are connected in parallel, then the 

total deflection produced by the springs is same as the deflection of the individual springs. 

We know that, 

W = W1 + W2 

or δ.k = δ. k1 + δ. k2 

∴ k = k1 + k2 

where   k = Combined stiffness of the springs, and 

δ = Deflection produced. 

 

Concentric or Composite Springs 

A concentric or composite spring is used for one of the following purposes: 

1. To obtain greater spring force within a given space. 
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2. To insure the operation of a mechanism in the event of failure of one of the 

springs. 

The concentric springs for the above two purposes may have two or more springs 

and have the same free lengths as shown in Fig. 1.5 (a) and are compressed equally. Such 

springs are used in automobile clutches, valve springs in aircraft, heavy duty diesel 

engines and rail-road car suspension systems. Sometimes concentric springs are used to 

obtain a spring force which does not increase in a direct relation to the deflection but 

increases faster. Such springs are made of different lengths as shown in Fig. 1.5 (b). The 

shorter spring begins to act only after the longer spring is compressed to a certain amount. 

These springs are used in governors of variable speed engines to take care of the variable 

centrifugal force. 

The adjacent coils of the concentric spring are wound in opposite directions to 

eliminate any tendency to bind. If the same material is used, the concentric springs are 

designed for the same stress. In order to get the same stress factor (K), it is desirable to 

have the same spring index (C). 

  

Fig 2.5 Concentric springs. 

[Source: “A Textbook of Machine Design by R.S. Khurmi J.K. Gupta, Page: 858] 

 

Consider a concentric spring as shown in Fig. 1.5 (a). 

Let   W = Axial load, 

W1 = Load shared by outer spring, 

W2 = Load shared by inner spring, 
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d1 = Diameter of spring wire of outer spring, 

d2 = Diameter of spring wire of inner spring, 

D1 = Mean diameter of outer spring, 

D2 = Mean diameter of inner spring, 

δ1 = Deflection of outer spring, 

δ2 = Deflection of inner spring, 

n1 = Number of active turns of outer spring, and 

n2 = Number of active turns of inner spring. 

Assuming that both the springs are made of same material, then the maximum 

shear stress induced in both the springs is approximately same, i.e. 

τ1 = τ2 

8 W1D1K1

π d1
3  = 

8 W2D2K2

π d2
3   

When stress factor, K1 = K2, then 

 W1D1

 d1
3  = 

W2D2

 d2
3        ...(i) 

If both the springs are effective throughout their working range, then their free length and 

deflection are equal, i.e. 

δ1 = δ2 

8W1D1
3n1

G.d1
4  = 

8W2D2
3n2

G.d2
4  

W1D1
3n1

d1
4  = 

W2D2
3n2

d2
4            ...(ii) 

When both the springs are compressed until the adjacent coils meet, then the solid length 

of both the springs is equal, i.e. 

n1. d1 = n2. d2 

∴ The equation (ii) may be written as 

W1D1
3

d1
5  = 

W2D2
3

d2
5               ...(iii) 



ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 

ME8593 DESIGN OF MACHINE ELEMENTS 

Now dividing equation (iii) by equation (i), we have 

D1
2

d1
2 = 

D2
2

d2
2 

i.e. the springs should be designed in such a way that the spring index for both the springs 

is same. 

From equations (i) and (iv), we have 

W1

d1
2 = 

W2

d2
2 

W1

W2
 = 

d1
2

d2
2 

From Fig. 1.5 (a), we find that the radial clearance between the two springs, 

c = (
D1

2
−

D2

2
) - (

d1

2
+

d2

2
) 

Usually, the radial clearance between the two springs is taken as (
d1

2
−

d2

2
) 

(
D1

2
−

D2

2
) - (

d1

2
+

d2

2
) = (

d1

2
−

d2

2
) 

D1− D2

2
 = d1              ...(vi) 

From equation (iv), we find that 

D1 = C. d1, and  

D2 = C. d2 

Substituting the values of D1 and D2 in equation (vi), we have 

Cd1− Cd2

2
 = d1 

C d1 – 2d1 = C. d2 

∴ d1 (C – 2) = C. d2 

d1

d2
 = 

C

C−2
 

 

Problem 2.3 

A concentric spring for an aircraft engine valve is to exert a maximum force of 5000 N 
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under an axial deflection of 40 mm. Both the springs have same free length, same solid 

length and are subjected to equal maximum shear stress of 850 MPa. If the spring index 

for both the springs is 6, find (a) the load shared by each spring, (b) the main dimensions 

of both the springs, and (c) the number of active coils in each spring. 

Assume G = 80 kN/mm2 and diametrial clearance to be equal to the difference between 

the wire diameters. 

Given Data:  

W = 5000 N  

δ = 40 mm  

τ1 = τ2 = 850 MPa = 850 N/mm2  

C = 6 

G = 80 kN/mm2 = 80 × 103 N/mm2 

The concentric spring is shown in Fig. 1.5 (a). 

(a) Load shared by each spring 

Let   W1 and W2 = Load shared by outer and inner spring respectively, 

d1 and d2 = Diameter of spring wires for outer and inner springs respectively, 

and 

D1 and D2 = Mean diameter of the outer and inner springs respectively. 

Since the diametral clearance is equal to the difference between the wire diameters, 

therefore 

(D1 – D2) – (d1 + d2) = d1 – d2 

  D1 – D2 = 2 d1 

We know that D1 = C. d1, and D2 = C. d2 

∴ C. d1 – C. d2 = 2 d1 

d1

d2
 = 

C

C−2
 = 

6

6−2
 = 1.5      ...(i) 

We also know that 
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W1

W2
 = 

d1
2

d2
2 = 1.52 =2.25             ...(ii) 

and     W1 + W2 = W = 5000 N            ...(iii) 

From equations (ii) and (iii), we find that 

W1 = 3462 N, and W2 = 1538 N 

(b) Main dimensions of both the springs 

We know that Wahl’s stress factor for both the springs, 

K1 = K2 = 
4C−1

4C−4
 + 

0.615

C
 

K1 = K2= 
4×6−1

4×6−4
 + 

0.615

6
 

K1 = K2 = 1.2525 

and maximum shear stress induced in the outer spring (τ1), 

850 = 
8 W1CK1

π d1
2  

850 = 
8 ×3462 ×6 ×1.2525

π d1
2  

850 = 
66243

(d1)2
 

(d1)
2 = 66 243 / 850 = 78 or  

d1 = 8.83 say 10 mm. 

and     D1 = C. d1 = 6 d1  

D1 = 6 × 10 = 60 mm. 

Similarly, maximum shear stress induced in the inner spring (τ2), 

850 = 
8 W2CK2

π d1
2  

850 = 
8 ×1538 ×6 ×1.2525

π d2
2  

850 = 
29428

(d2)2
 

 (d2)
2 = 29428 / 850 = 34.6  

d2 = 5.88 say 6 mm. 
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and     D2 = C. d2 = 6 × 6 = 36 mm. 

(c) Number of active coils in each spring 

Let  n1 and n2 = Number of active coils of the outer and inner spring respectively. 

We know that the axial deflection for the outer spring (δ), 

30 = 
8W1C3n1

G.d1
 

30 = 
8×3462 ×63 × n1

80×103 ×10
 

30 = 7.48 n1 

n1 = 40 / 7.48  

n1 = 5.35 say 6 

Assuming square and ground ends for the spring, the total number of turns of the outer 

spring, 

n1' = 6 + 2 = 8 

∴ Solid length of the outer spring, 

LS1 = n1’. d1 = 8 × 10  

LS1 = 80 mm 

Let n2' be the total number of turns of the inner spring. Since both the springs have the 

same solid length, therefore, 

n2’. d2 = n1’. d1 

n2’ = 
n1

′d1

d2
 

and     n2 = 14 – 2 = 12.     ... (n2' = n2 + 2) 

Since both the springs have the same free length, therefore 

Free length of outer spring = Free length of inner spring 

     = LS1 + δ + 0.15 δ  

     = 80 + 40 + 0.15 × 40  

     = 126 mm. 
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Other dimensions of the springs are as follows: 

Outer diameter of the outer spring 

= D1 + d1 = 60 + 10  

= 70 mm. 

Inner diameter of the outer spring 

= D1 – d1 = 60 – 10  

= 50 mm. 

Outer diameter of the inner spring 

= D2 + d2 = 36 + 6  

= 42 mm. 

Inner diameter of the inner spring 

= D2 – d2 = 36 – 6  

= 30 mm 

 

Helical Torsion Springs 

The helical torsion springs as shown in Fig. 3.1, may be made from round, 

rectangular or square wire. These are wound in a similar manner as helical compression 

or tension springs but the ends are shaped to transmit torque. The primary stress in helical 

torsion springs is bending stress whereas in compression or tension springs, the stresses 

are torsional shear stresses. The helical torsion springs are widely used for transmitting 

small torques as in door hinges, brush holders in electric motors, automobile starters etc. 

A little consideration will show that the radius of curvature of the coils changes when the 

twisting moment is applied to the spring. Thus, the wire is under pure bending. According 

to A.M. Wahl, the bending stress in a helical torsion spring made of round wire is 
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Fig 2.6 Helical torsion spring. 

[Source: “A Textbook of Machine Design by R.S. Khurmi J.K. Gupta, Page: 863] 

 

σb = K × 
32 M

π d3
 

σb = K × 
32 W.y

π d3
 

where  K = Wahl’s stress factor = 
4C2−C−1

4C2−C
 

C = Spring index, 

M = Bending moment = W × y, 

W = Load acting on the spring, 

y = Distance of load from the spring axis, and 

d = Diameter of spring wire. 

and total angle of twist or angular deflection, 

θ = 
M.l

E.I
 = 

M× πDn

E ×πd4/64
 

where   l = Length of the wire = π.D.n, 

E = Young’s modulus, 

I = Moment of inertia = 
𝜋

64
 × d4 

D = Diameter of the spring, and 

n = Number of turns. 

and deflection,       δ = θ × y = 
64 M.Dn

E.d4
 × y 

When the spring is made of rectangular wire having width b and thickness t, then 
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σb = K × 
6M

t.b2
 

σb = K × 
6W.y

t.b2
 

where    K = 
3C2−C−0.8

3C2−3C
 

Angular deflection, θ = 
12MπD.n

E.t.b3
 

δ = θ × y 

δ = 
12MπD.n

E.t.b3
 × y 

In case the spring is made of square wire with each side equal to b, then substituting t = 

b, in the above relation, we have 

σb = K × 
6M

t.b2
 

σb = K × 
6W.y

t.b2
 

θ = 
12MπD.n

E.t.b3
 

δ = 
12MπD.n

E.t.b3
 × y 

 


