

UNIT-II ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

5. KNAPSACK PROBLEM

Given n items of known weights w1, w2, . . ., wn and values v1, v2, . . . , vn and a knapsack

of capacity W, find the most valuable subset of the items that fit into the knapsack.

Real time examples:

• A Thief who wants to steal the most valuable loot that fits into his knapsack,

• Atransportplanethathastodeliverthemostvaluablesetofitemstoaremotelocation

without exceeding the plane’s capacity.

The exhaustive-search approach to this problem leads to generating all the subsets of the set of n items

given, computing the total weight of each subset in order to identify feasible subsets (i.e., the ones with

the total weight not exceeding the knapsack capacity), and finding a subset of the largest value among

them.

FIGURE 2.5 Instance of the knapsack problem

Subset Total weight Total value

Φ 0 $0

{1} 7 $42

{2} 3 $12

UNIT-II ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

{3} 4 $40

{4} 5 $25

{1, 2} 10 $54

{1, 3} 11 not feasible

{1, 4} 12 not feasible

{2, 3} 7 $52

{2, 4} 8 $37

{3, 4} 9 $65 (Maximum-Optimum)

{1, 2, 3} 14 not feasible

{1, 2, 4} 15 not feasible

{1, 3, 4} 16 not feasible

{ 2, 3, 4} 12 not feasible

{1, 2, 3, 4} 19 not feasible

FIGURE 2.6 knapsack problem’s solution by exhaustive search. The information about the

optimal selection is in bold.

Time efficiency: As given in the example, the solution to the instance of Figure 2.5 is

given in Figure 2.6. Since the number of subsets of an n-element set is 2n, the exhaustive

search leads to a Ω(2n) algorithm, no matter how efficiently individual subsets are

generated.

Note: Exhaustive search of both the traveling salesman and knapsack problems leads to

extremely inefficient algorithms on every input. In fact, these two problems are the best-

known examples of NP-hard problems. No polynomial-time algorithm is known for any

NP-hard problem. Moreover, most computer scientists believe that such algorithms do not

exist. some sophisticated approaches like backtracking and branch-and-bound enable

us to solve some instances but not all instances of these in less than exponential time.

Alternatively, we can use one of many approximation algorithms.

