Design Of Shear Key

1.3 Design for Cantilever Retaining Wall For Toe Slab with shear key

Example 3

Design a Toe slab for cantilever retaining wall to retain an earth embankment with a horizontal top 4m above ground level. Density of earth = 18 KN/m^3 . Angle of internal friction $\emptyset = 30$ degree. SBC of soil = 200 KN/m^2 . Coefficient of friction between soil and concrete = 0.5. Adopt M20 grade concrete and Fe 415 HYSD bars.

Given data:

Fig.1.1 Cantilever retaining wall

Step 1: Dimensions of retaining wall

(a) Depth of foundation =
$$q / \gamma$$
 (1- $\sin \emptyset / 1+ \sin \emptyset$)²
= 200 / 18 (1- $\sin 30 / 1+ \sin 30$)²

= 1.2m

Fig. 1.2 Cantilever retaining wall (Depth of foundation)

Fig. 1.3 Cantilever retaining wall (Overall depth of wall)

(c) Thickness of base slab
$$= H / 12$$

(d) Height of stem
$$'h' = 5200 - 450$$

$$= 4.75$$
m

Fig.1.4 Cantilever retaining wall (Thickness of base slab)

(e) Width of base slab 'b' =
$$0.5H$$
 to $0.6H$

$$= 2600 \text{ to } 3120$$

= 3000mm

Fig.1.5 Cantilever retaining wall (Width of base slab)

Step 2: Stability calculation

Fig. 1.6 Cantilever retaining wall (Stability calculation)

(a) Find load

w1 =
$$(b \times d \times \gamma c) + (\frac{1}{2} \times bh \times \gamma c)$$

= $(0.2 \times 4.75 \times 24) + (\frac{1}{2} \times 0.25 \times 4.75 \times 24)$
= $22.80 + 14.25$
= 37.05 KN

Fig. 1.7 Cantilever retaining wall (Stability calculation)

$$w2 = b \times d \times \gamma c$$

$$= 3 \times 0.45 \times 24$$

$$= 32.40 \text{ KN}$$

$$w3 = b \times d \times \gamma s$$

$$= 1.55 \times 4.75 \times 18$$

$$= 132.50 \text{ KN}$$
Total load = w1 + w2 + w3

= 201.95 KN

(b)Find moment @ a

$$= 32.40 \times 1.5$$

$$= 48.60 \text{ KNm}$$

$$M3 = W3 \times Length$$

$$= 132.50 \times 0.78$$

$$M4 = 107.2 \text{ KNm} \text{ (Moment at base)}$$

Total moment
$$M = M1 + M2 + M3 + M4$$

Point of application

$$Z = \sum M / \sum W$$

$$= 1.6 m$$

Eccentricity

$$e = Z - b/2$$

$$=1.6-(3/2)$$

$$= 0.1 m$$

i.e b = 3 (width of base slab)

$$b/6 = 3/6$$

$$= 0.5$$

Hence safe

Max and Min pressure at base

$$\sigma = \sum W / b [1 \pm (6e / b)]$$
$$= 201.95/3 [1 \pm (6 \times 0.1 / 3)]$$

$$\sigma$$
max = 67.32 [1 + 0.2]
= 80.78 KN/m^2
 σ min = 67.32 [1 - 0.2]
= 53.85 KN/m^2

Fig. 1.8 Cantilever retaining wall (Stability calculation Top view)

Step 3 : Design of Toe slab

(a) Find load (deductions)

Self weight of toe slab

'Wd1' =
$$B \times D \times \gamma c$$

= $1 \times 0.45 \times 24$
= 10.8 KN

Self weight of soil over toe slab

'Wd2' =
$$b x d x \gamma s$$

= $1 x 0.75 x 18$
= 13.50 KN

Fig. 1.9 Cantilever retaining wall (Toe slab)

Moment deduction

Md1 = W1 x length
=
$$10.8 \times 0.5$$

= 5.40KNm
Md2 = 13.50×0.5
= 6.75KNm
Md = M1 + M2
= $5.40 + 6.75$
= 12.15KNm

Fig.1.10 Cantilever retaining wall (Heal slab Top view)

(b) Upward pressure

(cdmf) 'W 1' =
$$\sigma$$
max (breadth) x d
= 1 x 71.78
= 71.78 KN
(mfe) 'W 2' = $\frac{1}{2}$ b x h
= $\frac{1}{2}$ x 1 x 8.98

= 4.49 KN

Moment

(cdmf) 'M 1' = W 1 x length
=
$$71.78 \times 0.5$$

= 35.89 KNm

(mfe) 'Md 2' =
$$W 2 x length (triangular)$$

 $= 4.49 \times 0.33$

= 1.496 KNm

$$M = M1 + M2$$

= 35.89 + 1.496

= 37.38KNm

Bending moment 'M' = M - Md

$$= 37.38 - 12.15$$

= 25.23 KNm

Factored moment 'Mu' = 25.23×1.5

= 37.85 KNm

(c) Find Ast

Mu =
$$(0.87 \text{ fy Ast d})[(1-\text{Ast fy})/(\text{b d fck})]$$

Page no. 96, IS 456:2000

$$37.85 \times 10^6 = (0.87 \times 415 \times Ast \times 400) [(1-415 \times Ast)/(1000 \times 400 \times 20)]$$

$$37.85 \times 10^6 = (144.42 \times 10^3 \text{ Ast}) [(1 - 5.187 \times 10^5 \text{ Ast})]$$

$$37.85 \times 10^6 = (144.42 \times 10^3 \text{ Ast}) - (7.49 \text{ Ast}^2)$$

$$37.85 \times 10^6 - (144.42 \times 10^3 \text{ Ast}) + (7.49 \text{ Ast}^2) = 0$$

(using calculator) mode > Eqn > degree > 2

$$a = 7.49$$

$$b = -144.42 \times 10^{3}$$

$$c = 37.85 \times 10^6$$

$$x2 = 265.7 \text{mm}^2$$

Ast
$$= 265.7 \text{mm}^2$$

Find spacing

Provide 12mm dia bars

Spacing =
$$1000 \times [(\pi d^2 / 4) / Ast]$$

= $1000 \times [(\pi \times 12^2 / 4) / 265.7]$
= $425.65 \sim 300 \text{mm} \text{ (max)}$

Provide 12mm dia bars at 240mm c/c

Find distribution reinforcement

Ast (dist) =
$$(0.12 / 100) \times bD$$

= $(0.12 / 100) \times 1000 \times 450$
= 540 mm^2

Provide 12mm dia bars

Spacing =
$$1000 \times (\pi d^2 / 4) / Ast$$

= $1000 \times [(\pi \times 12^2 / 4) / 540]$
= $209 \text{mm} \sim 210 \text{mm}$

Provide 12mm dia bars at 210mm c/c

Step 4: Check for safety against sliding

P = Ka x
$$\gamma$$
(H^2 / 2)
= (1/3) x 18 x (5.2^2 / 2)
= 81.12KN
Ka = (1- sin Ø / 1+ sin Ø)

F.O.S against sliding $= (\mu W / P)$

i.e

$$= (0.5 \times 201.95 / 81.12)$$
$$= 1.24 < 1.5$$

$$\mu = 0.5$$
 (given)

Since the wall is unsafe, so a shear key is to be designed below the stem

Step 5 : Design of shear key

Intensity of passive pressure in shear key front

Pp = KP x (
$$\sigma$$
max)pressure in shear key front
KP = (1+ $\sin \emptyset$ / 1- $\sin \emptyset$)

$$= (1+\sin 30 / 1-\sin 30)$$

Pp = $KP \times (\sigma max)$ pressure in shear key front

$$= 3 \times 71.78$$

$$= 215.34 \text{ KN/m}^2$$

Passive force $PF = PP \times a$

$$= 215.34 \times 0.45$$

$$=97KN$$

F.O.S against sliding
$$= [(\mu W + PF) / P]$$
$$= \{ [(0.5 \times 201.95) + 97] / 81.12 \}$$
$$= 2.4 > 1.5$$

Hence safe

Minimum % of reinforcement in shear key

Ast =
$$(0.3/100) \times bD$$

$$= 0.003 \times 1000 \times 450$$

= 1350mm^2

Provide 16mm dia bars

Spacing =
$$1000 \times (\pi d^2 / 4) / Ast$$

= $1000 \times [(\pi \times 16^2 / 4) / 1350]$
= $148.9 \text{mm} \sim 150 \text{mm}$

Provide 16mm dia bars at 150mm c/c

Step 6: Find shear stress

Shear force 'V' =
$$1.5P - \mu W$$
 = $(1.5 \times 81.12) - (0.5 \times 201.95)$ = $20.7KN$

Factored Shear force

$$'Vu' = 20.7 \times 1.5$$

= 31.05KN

Shear stress '
$$\tau v$$
' = Vu / bd
= 31.05 x 10^3 / (1000 x 400)
= 0.077 N/mm^2

Find τc

$$100 \text{Ast / bd} = 100 \times 1350 / (1000 \times 400)$$

= 0.335 N/mm²

Table 19, page no. 73, IS 456 2000

$$(0.36+0.48)/2 = 0.42$$

$$\tau c = 0.42 \text{ N/mm}^2$$

 $\tau c > \tau v$

Hence safe

Reinforcement detail

Fig.1.11 Cantilever retaining wall (Reinforcement details cross section)

Fig.1.12 Cantilever retaining wall (Reinforcement details Longitudinal cross section)