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9. PRIM’S ALGORITHM 

 A spanning tree of an undirected connected graph is its connected acyclic subgraph (i.e., a 

tree) that contains all the vertices of the graph. If such a graph has weights assigned to its edges, a 

minimum spanning tree is its spanning tree of the smallest weight, where the weight of a tree is 

defined as the sum of the weights on all its edges.  

 The minimum spanning tree problem is the problem of finding a minimum spanning tree 

for a given weighted connected graph. 

  

FIGURE 3.13 Graph and its spanning trees, with T1 being the minimum spanning tree. 

 

The minimum spanning tree is illustrated in Figure 3. If we were to try constructing 

a minimum spanning tree by exhaustive search, we would face two serious obstacles.  

First, the number of spanning trees grows exponentially with the graph size (at 

least for dense graphs).  

Second, generating all spanning trees for a given graph is not easy; in fact, it is 

more difficult than finding a minimum spanning tree for a weighted graph. 

 

Prim’s algorithm constructs a minimum spanning tree through a sequence of 

expanding subtrees. The initial subtree in such a sequence consists of a single vertex 

selected arbitrarily from the set V of the graph’s vertices.  

On each iteration, the algorithm expands the current tree in the greedy manner by 

simply attaching to it the nearest vertex not in that tree. The algorithm stops after all the 

graph’s vertices have been included in the tree being constructed 
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ALGORITHM Prim(G) 

//Prim’s algorithm for constructing a minimum spanning tree 

//Input: A weighted connected graph G = {V, E} 

//Output: ET, the set of edges composing a minimum spanning 

tree of G VT←{v0} //the set of tree vertices can be initialized 

with any vertex ET←Φ 

for i ←1 to |V| − 1 do 

                find a minimum-weight edgee∗=(v∗,u∗)among all the edges(v,u)  

such that v is in VT and u is in V −VT 

VT←VT∪{u*} 

ET←ET∪{e*} 

return ET 

If a graph is represented by its adjacency lists and the priority queue is 

implemented as a min-heap, the running time of the algorithm is O(|E| log |V |) in a 

connected graph, where |V| − 1≤ 

|E|. 
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FIGURE 3.14 Application of Prim’s algorithm. The parenthesized labels of a vertex in the middle 

column indicate the nearest tree vertex and edge weight; selected vertices and edges are in bold. 
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KRUSKAL'S ALGORITHM 

Kruskal’s algorithm looks at a minimum spanning tree of a weighted connected graph  

G= {V, E} as an acyclic subgraph with |V| − 1 edges for which the sum of the edge weights is 

the smallest.  

The algorithm constructs a minimum spanning tree as an expanding sequence of 

subgraphs that are always acyclic but are not necessarily connected on the intermediate stages 

of the algorithm. 

The algorithm begins by sorting the graph’s edges in no decreasing order of their 

weights. Then, starting with the empty subgraph, it scans this sorted list, adding the next edge 

on the list to the current subgraph if such an inclusion does not create a cycle and simply 

skipping the edge otherwise. 

Kruskal’s algorithm looks at  a minimum  spanning tree of a weighted  connected  graph  

G = (V, E) as an acyclic subgraph with |V| − 1 edges for which the sum of the edge weights is 

the smallest. 

ALGORITHM Kruskal(G) 

//Kruskal’s algorithm for constructing a minimum spanning tree 

//Input: A weighted connected graph G = ( V, E ) 

//Output: ET, the set of edges composing a minimum spanning tree of G 

sort E in nondecreasing order of the edge weights w(ei1) ≤ . . 

. ≤ w(ei|E|) ET← Φ; ecounter←0 //initialize the set of tree edges and 

itssize 

K ← 0 //initialize the number of processededges 

while ecounter <|V| − 1 do 

k ← k + 1 

if ET∪ {eik} is acyclic 

ET← ET∪ {eik}; ecounter ← ecounter + 1 

return ET 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 

 

  CS8451-DESIGN AND ANALYSIS OF ALGORITHMS 
 

 

 

The initial forest consists of |V | trivial trees, each comprising a single vertex of 

the graph. The final forest consists of a single tree, which is a minimum spanning tree of 

the graph. On each iteration, the algorithm takes the next edge (u, v) from the sorted list 

of the graph’s edges, finds the trees containing the vertices u and v, and, if these trees are 

not the same, unites them in a larger tree by adding the edge (u, v). 

 

Fortunately, there are efficient algorithms for doing so, including the crucial check 

for whether two vertices belong to the same tree. They are called union-find algorithms. 

With an efficient union-find algorithm, the running time of Kruskal’s algorithm will be 

O(|E| log |E|). 
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FIGURE 3.15 Application of Kruskal’s algorithm. Selected edges are shown in bold. 

 

 

DIJKSTRA'S ALGORITHM 

• Dijkstra’s Algorithm solves the single-source shortest-pathsproblem. 

• For a given vertex called the source in a weighted connected graph, find shortest 

paths to all its othervertices. 

• The single-source shortest-paths problem asks for a family of paths, each leading 

from the source to a different vertex in the graph, though some paths may, of 

course, have edges in common. 

• The most widely used applications are transportation planning and packet routing 

in communication networks including the Internet. 

• It also includes finding shortest paths in social networks, speech recognition, 

document formatting, robotics, compilers, and airline crew scheduling. 

• In the world of entertainment, one can mention pathfinding in video games and 
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finding best solutions to puzzles using their state-spacegraphs. 

• Dijkstra’s algorithm is the best-known algorithm for the single-source shortest-

paths problem. 

 

 

ALGORITHM Dijkstra(G,s) 

//Dijkstra’s algorithm for single-source shortest paths 

//Input: A weighted connected graph G = (V, E) with nonnegative weights and its vertex 

s 

//Output: The length dv of a shortest path from s to v and its penultimate vertex pv for 

every 

// vertex v in V 

Initialize(Q) //initialize priority queue to empty 

for every vertex v in V 

dv ← ∞; pv ← null 

Insert (Q, v, dv) //initialize vertex priority in the priority queue 

Ds ← 0; Decrease(Q, s, ds) //update priority 

of s with ds VT← Φ 

for i ←0 to |V| − 1 do 

u*← DeleteMin(Q) //delete the minimum priority element 

VT←VT∪ {u*} 

for every vertex u in V − VT that is 

adjacent to u*do if du
*+ w(u*, u) < 

du 
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du← du
*+ w(u *, u); 

pu← u* Decrease(Q, u, 

du) 

 

The time efficiency of Dijkstra’s algorithm depends on the data structures used for 

implementing the priority queue and for representing an input graph itself. It is in Θ (|V |2) 

for graphs represented by their weight matrix and the priority queue implemented as an 

unordered array. For graphs represented by their adjacency lists and the priority queue 

implemented as a min- heap, it is in O(|E| log |V |). 
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FIGURE 3.16 Application of Dijkstra’s algorithm. The next closest vertex is shown in bold 

The shortest paths (identified by following nonnumeric labels backward from a 

destination vertex in the left column to the source) and their lengths (given by numeric 

labels of the tree vertices) are as follows: 

              From a to b: a − b of length 3  

             From a to d: a − b − d of length 5  

             From a to c: a − b − c of length 7 

             From a to e: a − b − d − e of length 9 

 

 

 

 

 

 

 

 


