
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

9. PRIM’S ALGORITHM

 A spanning tree of an undirected connected graph is its connected acyclic subgraph (i.e., a

tree) that contains all the vertices of the graph. If such a graph has weights assigned to its edges, a

minimum spanning tree is its spanning tree of the smallest weight, where the weight of a tree is

defined as the sum of the weights on all its edges.

 The minimum spanning tree problem is the problem of finding a minimum spanning tree

for a given weighted connected graph.

FIGURE 3.13 Graph and its spanning trees, with T1 being the minimum spanning tree.

The minimum spanning tree is illustrated in Figure 3. If we were to try constructing

a minimum spanning tree by exhaustive search, we would face two serious obstacles.

First, the number of spanning trees grows exponentially with the graph size (at

least for dense graphs).

Second, generating all spanning trees for a given graph is not easy; in fact, it is

more difficult than finding a minimum spanning tree for a weighted graph.

Prim’s algorithm constructs a minimum spanning tree through a sequence of

expanding subtrees. The initial subtree in such a sequence consists of a single vertex

selected arbitrarily from the set V of the graph’s vertices.

On each iteration, the algorithm expands the current tree in the greedy manner by

simply attaching to it the nearest vertex not in that tree. The algorithm stops after all the

graph’s vertices have been included in the tree being constructed

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

ALGORITHM Prim(G)

//Prim’s algorithm for constructing a minimum spanning tree

//Input: A weighted connected graph G = {V, E}

//Output: ET, the set of edges composing a minimum spanning

tree of G VT←{v0} //the set of tree vertices can be initialized

with any vertex ET←Φ

for i ←1 to |V| − 1 do

 find a minimum-weight edgee∗=(v∗,u∗)among all the edges(v,u)

such that v is in VT and u is in V −VT

VT←VT∪{u*}

ET←ET∪{e*}

return ET

If a graph is represented by its adjacency lists and the priority queue is

implemented as a min-heap, the running time of the algorithm is O(|E| log |V |) in a

connected graph, where |V| − 1≤

|E|.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

FIGURE 3.14 Application of Prim’s algorithm. The parenthesized labels of a vertex in the middle

column indicate the nearest tree vertex and edge weight; selected vertices and edges are in bold.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

KRUSKAL'S ALGORITHM

Kruskal’s algorithm looks at a minimum spanning tree of a weighted connected graph

G= {V, E} as an acyclic subgraph with |V| − 1 edges for which the sum of the edge weights is

the smallest.

The algorithm constructs a minimum spanning tree as an expanding sequence of

subgraphs that are always acyclic but are not necessarily connected on the intermediate stages

of the algorithm.

The algorithm begins by sorting the graph’s edges in no decreasing order of their

weights. Then, starting with the empty subgraph, it scans this sorted list, adding the next edge

on the list to the current subgraph if such an inclusion does not create a cycle and simply

skipping the edge otherwise.

Kruskal’s algorithm looks at a minimum spanning tree of a weighted connected graph

G = (V, E) as an acyclic subgraph with |V| − 1 edges for which the sum of the edge weights is

the smallest.

ALGORITHM Kruskal(G)

//Kruskal’s algorithm for constructing a minimum spanning tree

//Input: A weighted connected graph G = (V, E)

//Output: ET, the set of edges composing a minimum spanning tree of G

sort E in nondecreasing order of the edge weights w(ei1) ≤ . .

. ≤ w(ei|E|) ET← Φ; ecounter←0 //initialize the set of tree edges and

itssize

K ← 0 //initialize the number of processededges

while ecounter <|V| − 1 do

k ← k + 1

if ET∪ {eik} is acyclic

ET← ET∪ {eik}; ecounter ← ecounter + 1

return ET

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

The initial forest consists of |V | trivial trees, each comprising a single vertex of

the graph. The final forest consists of a single tree, which is a minimum spanning tree of

the graph. On each iteration, the algorithm takes the next edge (u, v) from the sorted list

of the graph’s edges, finds the trees containing the vertices u and v, and, if these trees are

not the same, unites them in a larger tree by adding the edge (u, v).

Fortunately, there are efficient algorithms for doing so, including the crucial check

for whether two vertices belong to the same tree. They are called union-find algorithms.

With an efficient union-find algorithm, the running time of Kruskal’s algorithm will be

O(|E| log |E|).

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

FIGURE 3.15 Application of Kruskal’s algorithm. Selected edges are shown in bold.

DIJKSTRA'S ALGORITHM

• Dijkstra’s Algorithm solves the single-source shortest-pathsproblem.

• For a given vertex called the source in a weighted connected graph, find shortest

paths to all its othervertices.

• The single-source shortest-paths problem asks for a family of paths, each leading

from the source to a different vertex in the graph, though some paths may, of

course, have edges in common.

• The most widely used applications are transportation planning and packet routing

in communication networks including the Internet.

• It also includes finding shortest paths in social networks, speech recognition,

document formatting, robotics, compilers, and airline crew scheduling.

• In the world of entertainment, one can mention pathfinding in video games and

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

finding best solutions to puzzles using their state-spacegraphs.

• Dijkstra’s algorithm is the best-known algorithm for the single-source shortest-

paths problem.

ALGORITHM Dijkstra(G,s)

//Dijkstra’s algorithm for single-source shortest paths

//Input: A weighted connected graph G = (V, E) with nonnegative weights and its vertex

s

//Output: The length dv of a shortest path from s to v and its penultimate vertex pv for

every

// vertex v in V

Initialize(Q) //initialize priority queue to empty

for every vertex v in V

dv ← ∞; pv ← null

Insert (Q, v, dv) //initialize vertex priority in the priority queue

Ds ← 0; Decrease(Q, s, ds) //update priority

of s with ds VT← Φ

for i ←0 to |V| − 1 do

u*← DeleteMin(Q) //delete the minimum priority element

VT←VT∪ {u*}

for every vertex u in V − VT that is

adjacent to u*do if du
+ w(u, u) <

du

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

du← du
*+ w(u *, u);

pu← u* Decrease(Q, u,

du)

The time efficiency of Dijkstra’s algorithm depends on the data structures used for

implementing the priority queue and for representing an input graph itself. It is in Θ (|V |2)

for graphs represented by their weight matrix and the priority queue implemented as an

unordered array. For graphs represented by their adjacency lists and the priority queue

implemented as a min- heap, it is in O(|E| log |V |).

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8451-DESIGN AND ANALYSIS OF ALGORITHMS

FIGURE 3.16 Application of Dijkstra’s algorithm. The next closest vertex is shown in bold

The shortest paths (identified by following nonnumeric labels backward from a

destination vertex in the left column to the source) and their lengths (given by numeric

labels of the tree vertices) are as follows:

 From a to b: a − b of length 3

 From a to d: a − b − d of length 5

 From a to c: a − b − c of length 7

 From a to e: a − b − d − e of length 9

