
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 EE 8691 EMBEDDED SYSTEM S

 UNIT IV

 RTOS BASED EMBEDDED SYSTEM DESIGN

4.3 Memory Management

Functions Memory allocation

 When a process is created ,the memory manager allocates the memory addresses (blocks)
to it by mapping the process address space.

 Threads of a process share the memory space of the process

 Memory manager of the OS ─ secure , robust and well protected.

 No memory leaks and stack overflows

 Memory leaks means attempts to write in the memory block not allocated to a process or

data structure.

 Stack over flow means that the stack exceeding the allocated memory block(s)

Memory Management after Initial Allocation

Memory Managing Strategy for a system

 Fixed-blocks allocation

 Dynamic-blocks Allocation

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 EE 8691 EMBEDDED SYSTEM S

www.Vidyarthiplus.in

 Dynamic Page - Allocation

 Dynamic Data memory Allocation

 Dynamic address - relocation

 Multi processor Memory Allocation

 Memory Protection to OS functions

Memory allocation in RTOS

 RTOS may disable the support to the dynamic block allocation, MMU support to dynamic

page allocation and dynamic binding as this increases the latency of servicing the tasks and

ISRs.

 RTOS may not support to memory protection of the OS functions as this increases the

latency of servicing the tasks and ISRs.

 User functions are then can run in kernel space and run like kernel functions

 RTOS may provide for disabling of the support to memory protection among the tasks as

this increases the memory requirement for each task

Memory Manager functions

(i) use of memory address space by a process,
(ii) specific mechanisms to share the memory space and

(iii) specific mechanisms to restrict sharing of a given memory space

(iv) optimization of the access periods of a memory by using an hierarchy of memory

(caches primary and external secondary magnetic and optical memories).

Remember that the access periods are in the following increasing order : caches, primary and

external secondary magnetic and then or optical.

Fragmentation Memory Allocation

Problems

Fragmented not continuous memory addresses in two blocks of a process

 Time is spending first locating next free memory address before allocating that to

the process.

 A standard memory allocation scheme is to scan a linked list of indeterminate length to find

a suitable free memory block.

 When one allotted block of memory is de allocated the time is spent in first locating next

allocated memory block before de allocating that to the process.

 the time for allocation and de-allocation of the memory and blocks are variable (not

deterministic) when the block sizes are variable and when the memory is

fragmented.

 In RTOS, this leads to un predictable task performance

Memory management Example

RTOSCOS-II

 Memory partitioning

 A task must create a memory partition or several memory partitions by using function

Mem Create ()

 Then the task is permitted to use the partition or partitions.

 A partition has several memory blocks.

 Task consists of several fixed size memory blocks.

 The fixed size memory blocks allocation and de-allocation time takes fixed time

(deterministic).

 OS Mem Get()

—to provide a task a memory block or blocks from the partition

http://www.vidyarthiplus.in/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 EE 8691 EMBEDDED SYSTEM S

www.Vidyarthiplus.in

 OS Mem Put ()

—to release a memory block or blocks to the partition

Interrupt Service routine

Task

• ISR is a function called on an interrupt from an interrupting source.

• Further un like a function , the ISR can have hardware and software

assigned priorities.

• Further unlike a function , the ISR can have mask, which inhibits execution on

the event, when mask is set and enables execution when mask reset.

• Task defined as an executing computational unit that processes on a CPU and state

of which is under the control of kernel of an operating system.

Distinction Between Function, ISR and

Task Uses

• Function ─ for running specific set of codes for performing a specific set of

actions as per the arguments passed to it

• ISR ─ for running on an event specific set of codes for performing a specific set

of actions for servicing the interrupt call.

• Task ─ for running codes on context switching to it by OS and the codes can be in

endless loop for the event (s)

Calling Source

• Function ─ call from another function or process or thread or task.

• ISR─ interrupt-call for running an ISR can be from hardware or software at any

Instance.

• Task ─ A call to run the task is from the system (RTOS). RTOS can let another

higher priority task execute after blocking the present one. It is the RTOS (kernel)

only that controls the task scheduling.

Context Saving

• Function─ run by change in program counter instantaneous value. There is a stack.

On the top of which the program counter value (for the code left without running)

and other values (called functions context) save.

• All function have a common stack in order to support the nesting

• ISR─ Each ISR is an event-driven function code. The code run by change in

program counters instantaneous value. ISR has a stack for the program counter

instantaneous value and other values that must save.

• All ISRs can have common stack in case the OS supports nesting

• Task ─ Each task has a distinct task stack at distinct memory block for the context

(program counter instantaneous value and other CPU register values in task control

block) that must save.

• Each task has a distinct process structure (TCB) for it at distinct memory block

Response and Synchronization

http://www.vidyarthiplus.in/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 EE 8691 EMBEDDED SYSTEM S

www.Vidyarthiplus.in

• Function ─ nesting of one another, a hardware mechanism for sequential nested

mode synchronization between the functions directly without control of scheduler

or OS

• ISR─ a hardware mechanism for responding to an interrupt for the interrupt source

calls, according to the given OS kernel feature a synchronizing mechanism for the

ISRs, and that can be nesting support by the OS.

• ISR─ a hardware mechanism for responding to an interrupt for the interrupt source

calls, according to the given OS kernel feature a synchronizing mechanism for the

ISRs and that can be nesting support by the OS

Structure

• Function─ can be the subunit of a process or thread or task or ISR or subunit of

another function.

• ISR─ Can be considered as a function, which runs on an event at the interrupting

source.

• A pending interrupt is scheduled to run using an interrupt handling mechanism in

the OS, the mechanism can be priority based scheduling.

• The system, during running of an ISR, can let another higher priority ISR run.

• Task ─ is independent and can be considered as a function, which is called to run

by the OS scheduler using a context switching and task scheduling mechanism of

the OS.

• The system, during running of a task, can let another higher priority task run. The

kernel manages the tasks scheduling

Global Variables Use

• Function─ can change the global variables. The interrupts must be disabled and

after finishing use of global variable the interrupts are enabled.

• ISR─ When using a global variable in it, the interrupts must be disabled and after

finishing use of global variable the interrupts are enabled (analogous to case of a

function).

• Task ─ When using a global variable, either the interrupts are disabled and after

finishing use of global variable the interrupts are enabled or use lock functions in

critical sections, which can use global variables and memory buffers.

Posting and Sending Parameters

• Function─ can get the parameters and messages through the arguments passed to it

or global variables the references to which are made by it. Function returns the

results of the Operations.

• ISR─ using IPC functions can send (post) the signals, tokens or messages. ISR

can‘t use the mute protection of the critical sections by wait for the signals, token

or messages.

• Task ─ can send (post) the signals and messages.

• can wait for the signals and messages using the IPC functions, can use the mute or

lock protection of the code section by wait for the token or lock at the section

beginning and messages and post the token or unlock at the section end.

http://www.vidyarthiplus.in/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 EE 8691 EMBEDDED SYSTEM S

www.Vidyarthiplus.in

Semaphore as an event signaling variable or notifying variable

• Suppose that there are two trains.

• Assume that they use an identical track.

• When the first train A is to start on the track , a signal or token for A is set (true

taken)and

• Same signal or token for other train, B is reset (false, not released).

OS Functions for Semaphore as an event signaling variable or notifying variable:

• OS Functions provide for the use of a semaphore for signaling or notifying of

certain action or notifying the acceptance of the notice or signal.

• Let a binary Boolean variable, s, represents the semaphore. The taken and post

operations on s ─ (I) signals or notifies operations for communicating the

occurrence of an event and (ii) for communicating taking note of the event.

• Notifying variable s is like a token ─ (i) acceptance of the token is taking note of

that event (ii) Release of a token is the occurrence of an event

Binary Semaphore

• Let the token (flag for event occurrence)s initial value = 0
• Assume that the s increments from 0to1 for signaling or notifying occurrence of

an event from a section of codes in a task or thread.

• When the event is taken note by section in another task waiting for that event, the s

Decrements from 1 to 0 and the waiting task codes start another action.

• When s = 1─ assumed that it has been released (or sent or posted) and no task code

section has taken it yet.

• When s=0─assumed that it has been taken (or accepted) and other task code

• section has not taken it yet

Binary Semaphore use in ISR and Task

• An ISR can release token.

• A task can release the token as well accept the token or wait for taking the token

http://www.vidyarthiplus.in/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/
http://easyengineering.net/

	UNIT IV
	RTOS BASED EMBEDDED SYSTEM DESIGN
	4.3 Memory Management Functions Memory allocation
	Memory Management after Initial Allocation Memory Managing Strategy for a system
	Memory allocation in RTOS
	Memory Manager functions
	Fragmentation Memory Allocation Problems
	Memory management Example
	Interrupt Service routine
	Distinction Between Function, ISR and Task Uses
	Calling Source
	Context Saving
	Response and Synchronization
	Structure
	Global Variables Use
	Posting and Sending Parameters
	Semaphore as an event signaling variable or notifying variable
	OS Functions for Semaphore as an event signaling variable or notifying variable:
	Binary Semaphore

