
 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING

INSERTION SORT

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained

which is always sorted. For example, the lower part of an array is maintained to be sorted. An

element which is to be 'inserted in this sorted sub-list, has to find its appropriate place and then

it has to be inserted there. Hence the name, insertion sort.

The array is searched sequentially and unsorted items are moved and inserted into the sorted

sub-list (in the same array). This algorithm is not suitable for large data sets as its average and

worst case complexity are of Ο(n2), where n is the number of items.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING

Program for Insertion sort

def insertionsort(a):

 for index in range(1,len(a):

 currentvalue=a[i]

 position=i

 while position>0 and a[position-1]>currentvalue:

 a[position]=a[position-1]

 position=position-1

 a[position]=currentvalue

list=[50,60,40,30,20,70]

print(“Original list is:”,list)

insertionsort(list)

print(”List after insert:”,a)

Output:

Original list is=[50,60,40,30,20,70]

List afterinsert:[20,30.40,50,60,70]

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING

2. SELECTION SORT

 In the selection sort algorithm, an array is sorted by recursively finding the minimum

element from the unsorted part and inserting it at the beginning. Two subarrays are formed

during the execution of Selection sort on a given array.

 The subarray, which is already sorted

 The subarray, which is unsorted.

During every iteration of selection sort, the minimum element from the unsorted subarray is

popped and inserted into the sorted subarray.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING

Program for Selection sort:

def selectionSort(alist):

 for i in range(len(alist)-1,0,-1):

 pos=0

 for location in range(1,i+1):

 if alist[location]>alist[pos]:

 pos= location

 temp = alist[i]

 alist[i] = alist[pos]

 alist[pos] = temp

alist = [54,26,93,17,77,31,44,55,20]

selectionSort(alist)

print(a list)

Output:

 [17, 20, 26, 31, 44, 54, 55, 77, 93]

3. MERGE SORT

 Merge sort is a sorting technique based on divide and conquer technique. With worst-

case time complexity being Ο(n log n), it is one of the most respected algorithms.

Merge sort first divides the array into equal halves and then combines them in a sorted manner.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING

Program for Merge sort

def mergeSort(alist):

 print("Splitting ",alist)

 if len(alist)>1:

 mid = len(alist)//2

 lefthalf = alist[:mid]

 righthalf = alist[mid:]

 mergeSort(lefthalf)

 mergeSort(righthalf)

 i=0

 j=0

 k=0

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING

 while i < len(lefthalf) and j < len(righthalf):

 if lefthalf[i] < righthalf[j]:

 alist[k]=lefthalf[i]

 i=i+1

 else:

 alist[k]=righthalf[j]

 j=j+1

 k=k+1

 while i < len(lefthalf):

 alist[k]=lefthalf[i]

 i=i+1

 k=k+1

 while j < len(righthalf):

 alist[k]=righthalf[j]

 j=j+1

 k=k+1

 print("Merging ",alist)

alist = [50, 60, 40, 20, 70, 100]]

mergeSort(alist)

print(alist)

Output:

Original list is: [50, 60, 40, 20, 70, 100]

Sorted list is: [20, 40, 50, 60, 70, 100]

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING

HISTOGRAM

To create a histogram, the first step is to create bin of the ranges, then distribute the

whole range of the values into a series of intervals, and the count the values which fall into each

of the intervals. Bins are clearly identified as consecutive, non-overlapping intervals of variables.

Program:

def histogram(items):

for n in items:

output=’’

times=n

while (times>0):

 output+=’*’

times=times-1

print(output)

histogram([2,3,4,3,2])

Output:

**

**

Example :2

import matplotlib.pyplot as plt

import numpy as np

from matplotlib import colors

from matplotlib.ticker

import PercentFormatter

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING

Creating dataset

np.random.seed(23685752)

N_points = 10000

n_bins = 20

Creating distribution

x = np.random.randn(N_points)

y = .8 ** x + np.random.randn(10000) + 25

Creating histogram

fig, axs = plt.subplots(1, 1,

 figsize =(10, 7),

tight_layout = True)

axs.hist(x, bins = n_bins)

Show plot

plt.show()

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING

Output :

