
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS8392 OBJECT ORIENTED PROGRAMMING 

 

ABSTRACT CLASSES AND METHODS 

Abstract class 

A class that is declared as abstract is known as abstract class. It can have abstract and 

non-abstract methods (method with body). It needs to be extended and its method imple- 

mented. It cannot be instantiated. 

Syntax: 

abstract class classname 

{ 

} 

Abstract method 

A method that is declared as abstract and does not have implementation is known as 

abstract  method. The method body will be defined by its subclass. 

Abstract method can never be final and static. Any class that extends an abstract class 

must implement all the abstract methods declared by the super class. 

Note: 

A normal class (non-abstract class) cannot have abstract methods. 

Syntax: 

abstract returntype functionname (); //No definition 

Syntax for abstract class and method: 

   modifier abstract class className 

{ 

//declare fields 

//declare methods 

abstract dataType methodName(); 

} 

modifier class childClass extends className 

{ 

dataType methodName() 

{ 

} 

} 

 

Example 1 

//abstract parent class 

abstract class Animal 

{ 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS8392 OBJECT ORIENTED PROGRAMMING 

 

//abstract method 

public abstract void sound(); 

} 

//Lion class extends Animal class 

public class Lion extends Animal 

{ 

public void sound() 

{ 

System.out.println(“Roars”); 

} 

public static void main(String args[]) 

{ 

Animal obj = new Lion(); 

obj.sound(); 

} 

} 
 
 

Output: 

Roars 

In the above code, Animal is an abstract class and Lion is a concrete class. 
 

Example 2 

abstract class Bank 

{ 

abstract int getRateOfInterest(); 

} 

class SBI extends Bank 

{ 

int getRateOfInterest() 

{ 

return 7; 

} 

} 

class PNB extends Bank 

{ 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS8392 OBJECT ORIENTED PROGRAMMING 

 

int getRateOfInterest() 

{ 

return 8; 

} 

} 

public class TestBank 

{ 

public static void main(String args[]) 

{ 

Bank b=new SBI();//if object is PNB, method of PNB will be invoked 

int interest=b.getRateOfInterest(); 

System.out.println(“Rate of Interest is: “+interest+” %”); 

b=new PNB(); 

System.out.println(“Rate of Interest is: “+b.getRateOfInterest()+” %”); 

} 

} 

 

Output: 

Rate of Interest is: 7 % 

Rate of Interest is: 8 % 

Abstract class with concrete (normal) method 

Abstract classes can also have normal methods with definitions, along with abstract 

methods. 

Sample Code: 

abstract class A 

{ 

abstract void callme(); 

public void normal() 

{ 

System.out.println(“this is a normal (concrete) method.”); 

} 

} 

public class B extends A 

{ 

void callme() 

{ 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS8392 OBJECT ORIENTED PROGRAMMING 

 

System.out.println(“this is an callme (abstract) method.”); 

} 

public static void main(String[] args) 

{ 

B b = new B(); 

b.callme(); 

b.normal(); 

} 

} 

Output: 

this is an callme (abstract) method. 

this is a normal (concrete) method. 

 

Observations about abstract classes in Java 

1. An instance of an abstract class cannot be created; But, we can have references of 

abstract class type though. 

Sample Code: 

abstract class Base 

{ 

abstract void fun(); 

} 

class Derived extends Base 

{ 

void fun() 

{ 

System.out.println(“Derived fun() called”); 

} 

} 

public class Main 

{ 

public static void main(String args[]) 

{ 

// Base b = new Base(); Will lead to error 

// We can have references of Base type. 

Base b = new Derived(); 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS8392 OBJECT ORIENTED PROGRAMMING 

 

b.fun(); 

} 

} 

Output: 

Derived fun() called 
 

 

2. An abstract class can contain constructors in Java. And a constructor of ab- 

stract class is called when an instance of a inherited class is created. 

Sample Code: 

abstract class Base 

{ 

Base() 

{ 

System.out.println(“Within Base Constructor”); 

} 

abstract void fun(); 

} 

class Derived extends Base 

{ 

Derived() 

{ 

System.out.println(“Within Derived Constructor”); 

} 

void fun() 

{ 

System.out.println(“ Within Derived fun()”); 

} 

} 

public class Main 

{ 

public static void main(String args[]) 

{ 

Derived d = new Derived(); 

} 

} 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS8392 OBJECT ORIENTED PROGRAMMING 

 

Output: 

Within Base Constructor 

Within Derived Constructor 

 

3. We can have an abstract class without any abstract method. This allows us to create 

classes that cannot be instantiated, but can only be inherited. 

Sample Code: 

abstract class Base 

{ 

void fun() 

{ 

System.out.println(“Within Base fun()”); 

} 

} 

class Derived extends Base 

{ 

} 

public class Main 

{ 

public static void main(String args[]) 

{ 

Derived d = new Derived(); 

d.fun(); 

} 

} 

Output: 

Within Base fun() 

4. Abstract classes can also have final methods (methods that cannot be 

overridden). 

Sample Code: 

abstract class Base 

{ 

final void fun() 

{ 

 



ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY  

CS8392 OBJECT ORIENTED PROGRAMMING 

 

System.out.println(“Within Derived fun()”); 

} 

} 

class Derived extends Base 

{ 

} 

public class Main 

{ 

public static void main(String args[]) 

{ 

Base b = new Derived(); 

b.fun(); 

} 

} 

Output: 

Within Derived fun() 
 


