3.7 Computer program: Design of Armature main dimensions

Problem:

A $250 \mathrm{kw}, 460 \mathrm{~V}, 600 \mathrm{r} . \mathrm{p} . \mathrm{m}, 6$ pole dc is built with an armature diameter of 72 cm and core length 27 cm . The lap armature winding has 660 conductors. Using this data obtain preliminary dimensions for the armature, core, number of armature conductors and commutator segments for a $350 \mathrm{kw}, 500 \mathrm{~V}, 725$ r.p.m, 6 pole dc. Assume a square pole with pole arc $=.7$ pole pitch.

Solution:

Given,

$\mathrm{Po}=250 \mathrm{kw}$
$\mathrm{N}=600$ r.p.m so $\mathrm{Ns}=\mathrm{N} / 60=10 \mathrm{r} . \mathrm{p} . \mathrm{s}$
Assume $\mathrm{Po}=\mathrm{Pa}$
$\mathrm{D}=72 \mathrm{~cm}=.72 \mathrm{~m}$
$\mathrm{L}=27 \mathrm{~cm}=.27 \mathrm{~m}$
$\mathrm{Pa}=\mathrm{CoD} 2 \mathrm{LNs}$
so $\mathrm{Co}=\mathrm{Pa} /(\mathrm{D} 2 \mathrm{LNs})=250 /\left(.722^{*} .27 * 10\right)=178.6$
Number of conductors per parallel path Zpath $=660 / 6=110$
why 6?? cause its a lap wound so parallel path = number of poles.
Hence mean emf induced/conductor $\mathrm{ez}=460 / 110=4.18 \mathrm{~V}$
Also ez $=\mathrm{Bav}^{*} \mathrm{~L}^{*} \mathrm{Va}=\mathrm{Bav}{ }^{*} \mathrm{~L}^{*} \mathrm{pi}{ }^{*} \mathrm{D}^{* N} \mathrm{Ns}$
or Bav $=\mathrm{ez} /(\mathrm{L} * \mathrm{pi} * \mathrm{D} * \mathrm{Ns})=4.18 /(.27 * \mathrm{pi} * .72 * 10)=.68 \mathrm{~Wb} / \mathrm{m} 2$
Now for other dc machine... We have
$\mathrm{N}=725 \mathrm{r}$.p.m so $\mathrm{Ns}=\mathrm{N} / 60=12.08$
$\mathrm{Pa}=350 \mathrm{kw}$ we already have $\mathrm{Co}=178.6$

So D2L $=\mathrm{Pa} /(\mathrm{CoNs})=350 /\left(178.6^{*} 12.08\right)=.16222 \mathrm{~m} 3$
$\mathrm{L}=.7 * \mathrm{pi} * \mathrm{D} / 6=.36652 \mathrm{D}$
giving D3 $=.4426$
so $\mathrm{D}=.76 \mathrm{~m}$ hence length $\mathrm{L}=.28 \mathrm{~m}$
Now ez $=\mathrm{Bav}^{*} \mathrm{~L} * \mathrm{Va}=.68 * .28 * \mathrm{pi} * .76 * 12.08=5.53 \mathrm{~V}$
Number of conductors per parallel path $=500 / 5.53=90$
Number of conductors using lap winding $=90 * 6=540$

Using single turn coil....
Number of coils $=540 / 2=270$

Number of commutator segments $=$ number of coils $=270$

Check for minimim pitch of commutator segments....

Commutator diameter $=.7 \mathrm{D}=.7 * .76=.53 \mathrm{~m}$
Therefore pitch of commutator segment $=\mathrm{pi}^{*} .53=6.17 * 10-3 \mathrm{~m}$
AS this is more than the minimum allowable pitch of 4 mm
Thus 270 commutator segments are well within the limit.

Program:

function design_dc_machine_series_connected
\%Given

Po $=250 ;$
$\mathrm{N}=600$;
$\mathrm{Ns}=\mathrm{N} / 60 ;$
\%Assume
$\mathrm{Pa}=\mathrm{Po} ;$
$\mathrm{D}=.72 ;$
$\mathrm{L}=.27$;
\%number of conductors
$Z=660 ;$
pole $=6$;
$\operatorname{Vin}=460 ; \% \mathrm{~V}$
$\% \mathrm{~Pa}=\mathrm{CoD} 2 \mathrm{LNs}$
$\mathrm{Co}=\mathrm{Pa} /(\mathrm{D} * \mathrm{D} * \mathrm{~L} * \mathrm{Ns}) ;$
\%Number of conductors per parallel path
\%as lap winding so number of parallel path = number of poles

Ppath $=$ pole;

Zpath = Z/Ppath;
fprintf('\nProgram to Design a series connected DC machine');
fprintf('\n ');
fprintf('\backslash nNumber of conductors per parallel path $=$ ');
disp(Zpath);
fprintf(' \backslash nHence mean emf induced per conductor $=$ ');
$\mathrm{ez}=\mathrm{Vin} / Z \mathrm{path} ;$
disp(ez);
\%now Bav

Bav $=\mathrm{ez} /\left(\mathrm{L}^{*} \mathrm{pi}{ }^{*} \mathrm{D}^{* N s}\right) ;$
fprintf(' \backslash nAverage Flux density Bav = ');
disp(Bav);
\% for other Dc machine

N1 $=725$;
$\mathrm{N} 1 \mathrm{~s}=\mathrm{N} 1 / 60 ;$
$\mathrm{P} 1 \mathrm{a}=350 ;$
$\% \mathrm{D} 2 \mathrm{~L}=\mathrm{Pa} / \mathrm{CoNs}$
$\% \mathrm{~L}=.7 \mathrm{piD} /$ Pole
$\%$ square pole with pole arc $=.7$ pole pitch.
$\mathrm{D} 3=(\mathrm{P} 1 \mathrm{a} *$ pole $) /\left(\mathrm{Co} * \mathrm{~N} 1 \mathrm{~s} * .7^{*} \mathrm{pi}\right) ;$
$\mathrm{D}=\mathrm{D} 3^{\wedge}(1 / 3) ;$
\%hence
$\mathrm{L}=.7^{*} \mathrm{pi} * \mathrm{D} /$ pole;
fprintf(' $\backslash n$ Diameter D of the other machine $=`$);
$\operatorname{disp}(\mathrm{D})$;
fprintf(' \backslash nLength L of the other machine $=`$);
$\operatorname{disp}(\mathrm{L}) ;$
\%now ez
$\mathrm{ez}=\mathrm{Bav} * \mathrm{~L} * \mathrm{~N} 1 \mathrm{~s} * \mathrm{D} * \mathrm{pi} ;$
\%number of conductors per parallel path
\%number of conductor Z1

Vin1 $=500$;

Zpath = Vin1/ez;
fprintf('\nNumber of conductors per parallel path = ');
disp(round(Zpath));
fprintf('\nNumber of conductors using lap winding = ');
Zlap $=\operatorname{round}($ Zpath $) *$ pole;
disp(Zlap);
fprintf('\nChecking for minimum pitch of commutator segments...');
CommutatorDia $=.7 * \mathrm{D}$;
Commutatorpitch $=\mathrm{pi} *$ CommutatorDia;
if(Commutatorpitch>.004)
fprintf(' $\backslash n Y e s$ this is alloeable as Commutator pitch greater than 4 mm ');
else
fprintf('\nNo thisn is not allowable as Commutator pitch is less than 4mm');
end

Output:

Number of conductors per parallel path $=110$
Hence mean emf induced per conductor $=4.1818$
Average Flux density Bav $=0.6847$
Diameter D of the other machine $=0.7620$

Length L of the other machine $=0.2793$
Number of conductors per parallel path $=90$

Number of conductors using lap winding $=540$

Checking for minimum pitch of commutator segments...

Yes this is alloeable as Commutator pitch greater than 4 mm

