
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8651 INTERNET PROGRAMMING

2.2 INTRODUCTION TO JAVASCRIPT

JavaScript is a client side scripting language developed by Netscape for use within

HTML web pages. JavaScript is loosely based on Java and it is built into all the major modern

browsers like Internet Explorer, Firefox, Chrome, Safari etc.

Features of JavaScript

 JavaScript is a lightweight, interpreted scripting language that is directly embedded

into web pages.

 It is used for creating network-centric applications. It is complementary to and

integrated with Java and HTML.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8651 INTERNET PROGRAMMING

 It is an open and cross-platform scripting language.It adds interactivity to HTML

pages.

Capabilities of JavaScript

 JavaScript acts as a programming tool for web designers.They can add dynamic

features into an HTML page.

 JavaScript can react to events.JavaScript can read and write HTML elements and

validate input data.JavaScript can be used to create cookies and much more.

Placement of JavaScript in a HTML File:

The following are the ways to include JavaScript in the HTML file:

 Script in <head>...</head> section.

 Script in <body>...</body> section.

 Script in <body>...</body> and <head>...</head> sections. Here JavaScript is

included at both head and body of the HTML. The above three are inline

JavaScripts

 Script in and external file and then include in <head>...</head> section. Here

the JavaScript is an external file and the JavaScript file is linked with the

HTML file in the header section. This is external JavaScript.

Inline JavaScript

In Inline JavaScript, the scripts can be placed anywhere on the page. The output of a

page will appear where the script block is in the HTML file. For instance if the JavaScript

blocks are placed in the header region of the HTML document, then the dynamic content will

appear in the header part of the web page and if the script blocks are at the body region of the

HTML document, then the dynamic content will appear in the body part of the web page.

It is a good practice to place the scripts at the bottom of the HTML document. The

reason is that each time the browser encounters a <script> tag it has to pause, compile the

script, execute the script, then continue on generating the page. This takes time.

External JavaScript

External JavaScript allows the reuse of same block of code on several different web

pages. The JavaScript code will be written on a separate page and the web pages can make use

of this code by including the page in the src attribute of the script tag.

The biggest advantage to have an external JavaScript file is that once the file has been

loaded, the script will remain in the the browser's cache area. So the next time the page will

be loaded from the browser's cache instead of having to reload it over the Internet. This

enables faster execution.

Syntax: <script type='text/javascript' src=’filename.js’>

</script>

When the browser encounters this block it will load filename.js and execute it.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8651 INTERNET PROGRAMMING

Advantages of external JavaScript

 It separates HTML and code.It makes HTML and JavaScript easier to read and

maintain.

 Cached JavaScript files can speed up page loads.

External JavaScript

external.js

The external.js is a JavaScript file. It cannot contain <script></script>.

Differences between inline and external javascript

Inline JavaScript External JavaScript

The JavaScript code will be embedded in the

same html document.

The JavaScript code will be included in

the src attribute of the <script> in the

html document. The JavaScript code will

not be a part of the html document.

Difficult to maintain and slow. Easy to maintain and faster execution

since the external file is stored in

brower’s cache.

Creating a simple web page with JavaScript

JavaScript is embedded inside a HTML code.A JavaScript consists of set of JavaScript

statements that are placed within the <script>... </script> HTML tags in a web page. The

<script>tag alert the browser program to begin interpreting all the text between these tags as a

script.

JavaScript ignores spaces, tabs, and newlines that appear in JavaScript programs.

Usage of semi colons is optional. But it is a good programming practice to use semi colons

where ever necessary to enhance the readability of the code. JavaScript is a case-sensitive

language. The identifiers “CAT” and “cat” are two different tokens in JavaScript because of

their cases.

Syntax: <script> JavaScript code</script>

function popup()

{alert("Hello World")}

<html><head><script src="external.js"></script></head>

<body>

<input type="button" onclick="popup()" value="Click Me!">

</body></html>

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8651 INTERNET PROGRAMMING

<html><body>

<script language="javascript"

type="text/javascript">

document.write("Simple Java Script")

</script></body></html>

The attributes of the script tag are:

 Language:

This specifies the scripting language used.In case of JavaScript, the value will be

javascript. If other scripting languages are used, then this attribute will take the names of

the language used.This is an optional attribute.

 Type

This attribute specifies the type of code.Its value should be set to

text/javascript.Example:<script language="JavaScript" type="text/javascript">

JavaScript code </script>

Simple JavaScript

 The first method is to use is the document.writeln(string). This is used while the web page

is being constructed. After the page has finished loading a new document.writeln(string)

command will delete the page in most browsers.

 As the page is loading, JavaScript will encounter this script and it will output " Simple

Java Script " exactly where the script block appears on the page.The problem with writeln

is that if this method is used after the page has loaded the browser will destroy the page

and start constructing a new one.

Comments in JavaScript

JavaScript supports both C-style and C++-style comments.The text between // and the end of

a line is treated as a comment and is ignored by JavaScript. This is single line comment.The

text between the characters /* and */ is treated as a comment. This is multi-line

comment.JavaScript also recognizes the HTML comment opening sequence <!--. JavaScript

treats this as a single-line comment. The closing of HTML comment should be written as //--

>.

Data types

JavaScript allows three primitive data types:Numbers, Strings and Boolean. JavaScript

also defines two trivial data types, null and undefined both definesonlya single value.

 ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8651 INTERNET PROGRAMMING

Reserved words

The reserved words or keywords cannot be used as JavaScript variables, functions,

methods, loop labels, or any object names. The following are the keywords in JavaScript:

Abstract else instanceof switch

boolean enum int synchronized

break export interface this

byte extends long throw

case false native throws

catch final new transient

char finally null true

class float package try

const for private typeof

continue function protected var

debugger goto public void

default if return volatile

delete implements short while

do import static with

double in super

JavaScript Variables

Variables are named containers. JavaScript is not a strongly typed language. The

programmer needs to care only what the variable is storing. In JavaScript the variables can

store anything, even functions. Before using a variable in a JavaScript program, it must be

declared.

Syntax:varvariable_name;

Here var is the keyword and is optional. Any variable in JavaScript is declared without

specifying its data type. The variable takes the type of the value it holds.

1. var s= 'This is a string'; //now s is of string data type

2. var s = 25; //now s is of number or integer data type

3. var s = true; // now s is of Boolean data type.

4. var s = [0, 'one', 2, 3, '4', 5]; // now s is of array data type

5. var s = { 'color': 'red'} //now s is of object data type. Color is a JavaScript object

6. var s = function()

{ return “example function” }

// The compiler executes the function and stores the return value of the function

which is// " example function" in the variable s.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8651 INTERNET PROGRAMMING

Naming variables

 Keywords in JavaScript cannot be used as a valid variable name.JavaScript variable

names should not start with a numeral (0-9). They must begin with a letter or the

underscore character. JavaScript variable names are casesensitive.

Scope of a variable

The lifetime of the JavaScript variables starts when they are declared, and ends when the

page is closed. The scope of a variable is the region of the program in which it is defined.

JavaScript variables will have only two scopes:

Global Variables: A global variable has global scope which means it can be accessed

everywhere in the JavaScript code of the web page. If a function defines a new variable

without using the var keyword, that variable will be a global variable.

Local Variables: A local variable will be visible only within a function where it is defined.

Function parameters are always local to that function.

Special Keywords

JavaScript has a few pre-defined variables with special or fixed meaning. The

following are those special keywords:

 NaN (Not a Number)-This is generated when an arithmetic operation returns an invalid

result.

 Infinity is a keyword which is returned when an arithmetic operation overflows

JavaScript's precision which is in the order of 300 digits.

 Null is a reserved word that means "empty". In boolean operations null evaluates as

false.JavaScript supports true and false as boolean values.

 Undefined value-If a variable has not been declared or assigned yet then that variable will

be given a special undefined value. In boolean operations undefined evaluates as false.

Arithmetic Operators: The following are the arithmetic operators supported by JavaScript:

+, -, *, /, % (modulus), ++ and

Comparison Operators: Javascript supports ==, !=, >, <, >= and <= operators.

Logical Operators: The following are the logical operators supported by JavaScript:&&, ||

and !.

Bitwise Operators: The following are the bitwise operators supported by JavaScript: &, | and

^.

Assignment Operators: The following are the assignment operator formats supported by

JavaScript: =, +=, -=, *=, /=, %=.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8651 INTERNET PROGRAMMING

Example: typeof(1) //This returns number Syntax: typeof(operand)

Conditional Operator or ternary operator (? :): This first evaluates an expression for a true

or false value and then execute one of the two given statements depending upon the result of

the evaluation.

if (operand1 conditonal operator operand 2)? statement1 :statement2

Example:if(a= =b)?1:0

typeof Operator

The typeof is a unary operator. This operator returns the data type of the operand. The

typeof operator valuates to number, string, or boolean depending on the value taken by the

operand.

JavaScript Statements

Statements define what the script will do and how it will be done. The end of a

statement is indicated with a semicolon(;). The following are the types of statements in

JavaScript:Conditional Statements, Loop Statements, Object Manipulation Statements,

Comment Statements and Exception Handling Statements

Comment Statements

Comment statements are used to prevent the browser from executing certain parts of

code that you designate as non-code. The single line comment is just two slashes (//) and the

multiple line comment starts with (/*) and ends with (*/).

Exception Handling Statements

These statements are safety mechanisms, so that the code handles common problems

that may arise. The try...catch statement tries to execute a piece of code and if it fails, the

catch should handle the error gracefully.

Conditional Statements

Java script supports the following conditional control statements:Simple if, If else, If

else ladder and Switch

a) Simple if

The if statement is the fundamental control statement that allows JavaScript to make

decisions and execute statements conditionally.

b) if else statement

The if...else statement is a form of control statement that allows JavaScript to execute

statements in more controlled way. If the condition evaluates to true then one block of

statements will get executed and if the condition is false other block of statements will get

executed.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8651 INTERNET PROGRAMMING

Output:

Distinction

<html>

<script type="text/javascript">

var grade='A';

switch (grade)

{ case 'A':document.write("Distinction
"); break;

case 'B': document.write("First Class
"); break;

case 'C': document.write("Second Class
");break;

case 'F':document.write("Failed
"); break;

default: document.write("Did not appear for exams
")

}</script></html>

c) if-else ladder

The if else ladder statement is an advanced form of control statement that allows

JavaScript to make correct decision out of several conditions. A normal If Statement must be

placed before the use the else If statement. This is because the else if statement is an add- on

to the simple if Statement. Any number of else if statements can be included in a program.

If-else ladder

<html><script type="text/javascript"> Output:

var a= "first letter"; a is the first letter

if(a == “first number”)

{document.write("1 is the first natural number");}

else if(a == "first letter")

{ document.write("a is the first letter”);}

else { document.write("nothing”);}

</script></html>

d) Switch statement

The basic syntax of the switch statement is to give an expression to evaluate and

several different statements to execute based on the value of the expression. The interpreter

checks each case against the value of the expression until a match is found. If nothing

matches, a default condition will be used.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8651 INTERNET PROGRAMMING

Looping Statements

The following are the looping statements in JavaScript:While loop, Do while loop and

For loop

a) While loop

The most basic loop in JavaScript is the while loop. There are two key parts to a

JavaScript while loop: The conditional statement which must be true for the while loop's code

to be executed. The while loop's code that is contained in curly braces "{ and }" will be

executed if the condition is True.

When a while loop begins, the JavaScript interpreter checks if the condition statement

is true. If it is, the code between the curly braces is executed. The same procedure is repeated

until the condition stays true. If the condition statement is always True, then you will never

exit the while loop.

b) do-while loop

The do...while loop is similar to the while loop except that the condition check

happens at the end of the loop. This means that the loop will always be executed at least once,

even if the condition is false.

Do-while

<html> Output:

<script type="text/javascript"> loop = 0

var loop= 0; loop = 1

varlinebreak = "
"; loop = 2

do{ loop = 3

document.write("loop= " + loop); loop = 4

document.write(linebreak); loop = 5

loop++;

}while(loop<5);

</script></html>

c) for loop

The for loop is the most compact form of looping and includes the following three

important parts: The loop initialization where we initialize our counter to a starting value.

The initialization statement is executed before the loop begins.The test statement which

will test if the given condition is true or not. If condition is true then code given inside the

loop will be executed otherwise loop will come out.The iteration statement where counter

value is incremented or decremented.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8651 INTERNET PROGRAMMING

This is my first function

Output: <html><head><script type="text/javascript">

function firstfunction()

{document.write(“This is my first function”)}

For loop

<html><script type="text/javascript"> Output:

varlinebreak = "
"; Output:

loop=0; Counter = 0

for(i = 0; i < 4; i++) Counter = 1

{ document.write("Counter = " +i); Counter = 2

document.write(linebreak); Counter = 3

}</script></html>

Break and Continue Statements

The break statement is used to exit a loop early. It breaks the execution of the code

from that block.The continue statement tells the interpreter to immediately start the next

iteration of the loop and skip remaining code block.When a continue statement is encountered,

program flow will move to the loop check expression immediately and if condition remain

true then it start next iteration otherwise control comes out of the loop.

Functions in JavaScript

A JavaScript function contains some code that will be executed only by an event or by

a call to that function.The function can be called from anywhere within the page or from other

external pages.Functions can be defined either <head> or <body>.The most common way to

define a function (optional), and a statement block surrounded by curly braces. As a

convention, they are typically defined in the <head> section.

Syntax: <script type="text/javascript">

Function functionname(parameter-list)

{ statements}

</script>

Calling a Function:

The syntax to invoke a function is:

<script type="text/javascript">functionname(parameter-list) </script>

Functions

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8651 INTERNET PROGRAMMING

<head>

<script type="text/javascript">

alert("Hello there");

</script></head

<head><script type="text/javascript">

varretVal = confirm("Are you sure you want to delete this

record ?");

if(retVal == true){

alert("User wants to delete!");return true; }

Dialog boxes

JavaScript supports three types of dialog boxes:Alert dialog box, Prompt dialog box

and Confirmation dialog box

Alert dialog box

An alert dialog box is used to give a warning message to the users. It pops up a

message box displaying some contents with an OK button. JavaScript alerts are used in the

following situations:

 To see a message before doing anything on the website.

 To warn the user about something.

 It can be used as an error indication.

Alert Dialog box

Confirmation Dialog Box:

A confirmation dialog box is mostly used to take user's consent on any option. It

displays a dialog box with two buttons: OK and Cancel. If the user clicks on OK button the

window method confirm() will return true. If the user clicks on the Cancel button confirm()

returns false.

Confirmation dialog box

onclick="firstfunction()" >

</form></body></html>

me!" value="Click

</script></head>

<body><form>

<input type="button"

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

 CS8651 INTERNET PROGRAMMING

<head>

<script type="text/javascript">

varretVal = prompt("Enter your name :”);

</script></head>

Prompt Dialog Box:

The prompt dialog box is very useful when a pop-up text box to used to get user input.

Thus it enables to interact with the user. The user needs to fill in the field and then click OK.

This dialog box is displayed using a method called prompt() which takes two parameters:

(i) A label which you want to display in the text box

(ii) A default string to display in the text box.

This dialog box with two buttons: OK and Cancel. If the user clicks on OK button the

window method prompt() will return entered value from the text box. If the user clicks on the

Cancel button the window method prompt() returns null.

Prompt dialog box

else{

alert("User does not want to delete!"); return false; }

</script></head>

