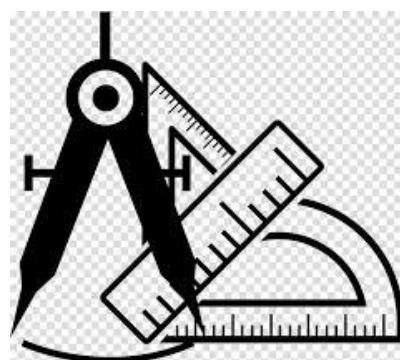


ROHINI

COLLEGE OF ENGINEERING AND TECHNOLOGY


Approved by AICTE and affiliated to Anna University,(An ISO Certified Institution)

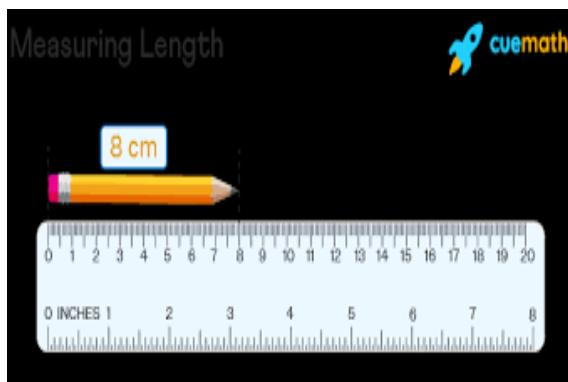
Accredited by NAAC with A+ Grade

DEPARTMENT OF MECHANICAL ENGINEERING

24ME403 - METROLOGY & MEASUREMENTS

Dr. A. ARUL MARCEL MOSHI,
ASSOCIATE PROFESSOR / MECH.

24ME403 – METROLOGY & MEASUREMENTS


UNIT I: BASICS OF METROLOGY

CO1: To explain the basics of standards of measurement and errors in industrial applications.

Methods of Measurement

1) Direct method (or) primary measurement

- In this method, the quantity to be measured is directly measured with an instrument, without needing to calculate it from other measurements.
- **Example:** Scale, protractor, thermometer, etc.,

2) Indirect method

- In this method, the quantity to be measured is determined indirectly by measuring other related parameters and using a known mathematical relationship to calculate it.
- **Example:** Angle measurement using sine bar, measurement of discharge of fluid using Venturimeter, etc.,

3) Absolute method (or) Fundamental method

- This is a highly accurate technique where a physical quantity is determined directly from its base definition, using fundamental physical laws and constants, without relying on calibrations against another standard.
- **Example:** using a cesium atomic clock for time measurement, using iodine stabilized He-Ne laser for length measurement, etc.,

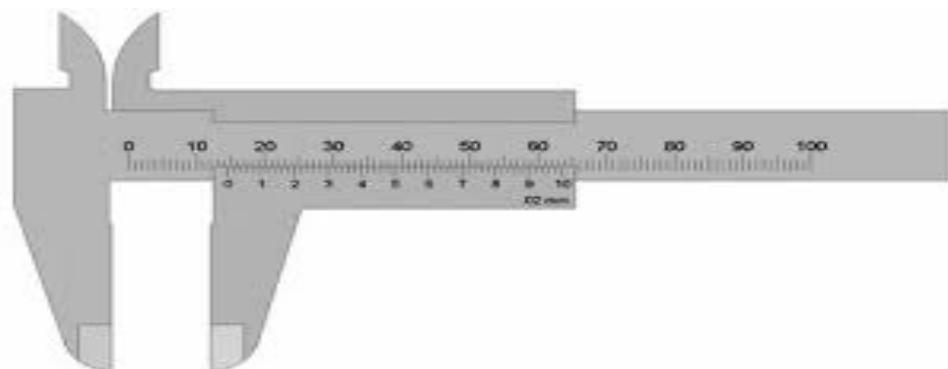
The typical emission wavelength of He-Ne laser is about 632.8 nm in air.

4) Comparison method

- In this method, the quantity to be measured is determined by directly comparing it with a known standard or reference of the same kind.
- **Example:** Weight measurement using a traditional weighing scale.

5) Transposition method

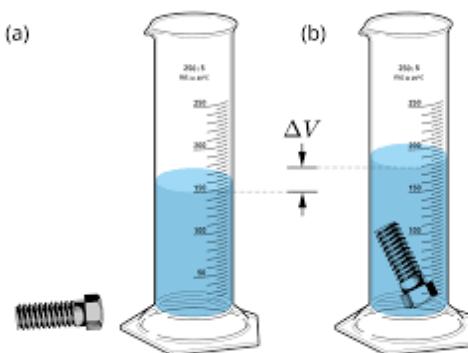
- This is a comparison technique where the quantity being measured and a known standard are interchanged in position within the measurement system to eliminate errors and determine the unknown value accurately.
- **Example:** Weighing a Gold coin using an unequal-arm balance.


6) Substitution method

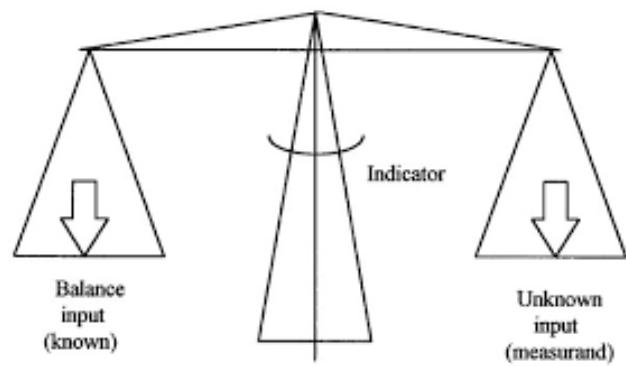
- This is a technique where the unknown quantity is replaced by a known adjustable standard in the same measurement setup until the instrument gives the same reading.
- **Example:** Weighing a jewel with a single-pan balance.

7) Coincidence method

- In this method, the quantity to be measured is determined by achieving precise alignment or coincidence between a movable marker and a reference scale or pattern, allowing very fine resolution without complex calculations.
- **Example:** Vernier caliper, Vernier height gauge, etc.,


8) Deflection method

- In this method, the quantity to be measured is directly indicated by the deflection or displacement of a pointer on a calibrated scale, without needing to calculate it from other measurements.
- **Example:** Speedometer, analogue pressure gauge, etc.,


9) Complementary method

- In this method, the quantity to be measured is determined by completing a full known total, where the measured complementary part is subtracted from the whole to find the unknown value, rather than measuring it directly with an instrument.
- **Example:** Determining the volume of a solid object by means of the displaced volume of liquid.

10) Method of Null measurement

- In this method, the quantity to be measured is balanced against a known standard until a detector shows zero effect (null condition).
- **Example:** Using a Wheatstone bridge to find an unknown resistor – by adjusting a known resistor until the galvanometer shows zero current.

