24CS402- DATA STRUCTURES USING C++

5 UNIT V SEARCHING, SORTING AND HASHING

Searching - Linear Search - Binary Search. Sorting — Selection sort — Insertion sort
- Quick sort — Merge Sort — Hashing — Hash Functions - Separate Chaining — Open
Addressing. Case Study: Pacemaker data buffering, Data structures in firmware for

wearable health devices, DSP filter coefficient handling using arrays and lists.

5.1Searching
Searching is the process of finding the position of a specific element (key) in a

list, array, or data structure. Searching is very important because in many

applications, we need to locate data quickly.
Searching Techniques

To search an element in a given array, it can be done in following ways:
1. Sequential(Linear) Search

2. Binary Search

5.1.1 Linear Search
e Sequential search is also called as Linear Search.

e Sequential search starts at the beginning of the list and checks
every element of the list.
e Elements are searched one by one from the beginning.
e Works on unsorted arrays.
e Simple and easy to implement.
e It is a basic and simple search algorithm.

e Sequential search compares the element with all the other elements
|

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 1

24CS402- DATA STRUCTURES USING C++

given in the list. If the element is matched, it returns the value index,

else it returns -1.

A simple approach is to do linear search, i.e

e Start from the leftmost element of arr[] and one by one compare x
with each element of arr[] If x matches with an element, return the

index.

e If x doesn’t match with any of elements, return -1.

Example: Consider the following list of elements and the element to be
searched is 12.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 2

24CS402- DATA STRUCTURES USING C++

list |65|20]|10|55]|32|12|50]|99

search element 12

Step 1:
search element (12) is compared with first element (65)

list [B8]20]10[55][32[12][50]99
12

Both are not matching. So move to next element
Step 2:
search element (12) is compared with next element (20)

list |65 10|55|32|12|50]|99
12

Both are not matching. So move to next element
Step 3:
search element (12) is compared with next element (10)

list [65]20]@@]55]32[12][50]99
12

Both are not matching. So move to next element
Step 4:
search element (12) is compared with next element (55)

list [65][20]10]88]32[12]50][99
12

Both are not matching. So move to next element

Step 5:
search element (12) is compared with next element (32)

list [65]20]10][55]82][12]50][99
12

Both are not matching. So move to next element
Step 6:
search element (12) is compared with next element (12)

list [65]20]10][55][32]E2]50][99
12

Both are matching. So we stop comparing and display
element found at index 5.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS402- DATA STRUCTURES USING C++

Program

#include <iostream.h>
#include <conio.h>
void main()

{
int a[50], n, key, i;
cout << "Enter number of elements: ";
cin >> n;
cout << "Enter elements of array:\n";
for(i=0; i < n;i++)
cin >> alil;

cout << "Enter element to search: ";

cin >> key;

// Search for key

for(i=0;i<n;i++)

{
if(ali] == key)
{
cout << "Element found at position " <<i + 1;
getch();
return; // Exit program after finding element
b

I ——
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 4

24CS402- DATA STRUCTURES USING C++

b

cout << "Element not found";

getch();

Advantages:

Simple to understand and implement.
Works on unsorted data.

No extra memory required.

Disadvantages:

Slow for large arrays (O(n) time).

Applications:

N o u AW N e

5.1.2

. Searching elements in small data sets
. Searching in unsorted lists or arrays

. Finding a record in a sequential file

Searching elements in arrays and linked lists
Checking whether an element exists or not
Searching in dynamic data where frequent updates occur

Searching when no indexing technique is available

BINARY SEARCH

Definition:

Binary search works on sorted arrays. It repeatedly divides the array in

half to locate the element.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

5

24CS402- DATA STRUCTURES USING C++

e Search a sorted array by repeatedly dividing the search interval in half.
e Begin with an interval covering the whole array.

e If the value of the search key is less than the item in the middle

of the interval, narrow the interval to the lower half.

e Otherwise narrow it to the upper half.

If searching for 23 in the 10-element array:

2 [s [8[12]16[23]38[s6][72]a
i TERE T EIEEIE o
f:k: ig'half 2L3 38 - 72 9H1
RN - +

e Repeatedly check until the value is found or the interval is empty.

Algorithm
e Compare x with the middle element
e If x matches with middle element, we return the mid index.

e Else If x is greater than the mid element, then x can only lie in right

half subarray after the mid element. So we recur for right half.

e Else (x is smaller) recur for the left half.

Program

int binarySearch(int arr[], int |, int r, int x)

I ——
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 6

24CS402- DATA STRUCTURES USING C++

{
if (r>=1)
{
intmid =1 + (r -1)/2; if (arr[mid] == x)
return mid; if (x<arr[mid])
return binarySearch(arr, |, mid-1, x);
relse
b
b

return binarySearch(arr, mid+1, r, x);
Advantages:

« Very fast (O(log n) time).

« Efficient for large data.
Disadvantages:

e Only works on sorted arrays.
Applications:

Searching elements in sorted arrays or lists

Finding data in large databases with sorted records
Searching in dictionaries and phone directories
Efficient searching in static data sets

Finding an element’s position or index in a sorted list

Used in library management systems for book search

N U A WwN e

Searching in computer memory where data is stored in sorted order.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY 7

