
RIHINI COLLEGE OF ENGINEERING AND TECHNOLOGY/24EE404/PRISCILLA 

 

Data acquisition (DAQ) with Arduino  

Data acquisition (DAQ) with Arduino involves using the microcontroller to sample 

real-world analog or digital signals from sensors and convert them into digital data 

for processing, analysis, or storage. This process is a cost-effective alternative to 

commercial DAQ systems.  

Components of an Arduino DAQ System 

 

 

A basic Arduino-based data acquisition system typically includes:  

Sensors: Devices that measure physical parameters like temperature, pressure, 

current, or light intensity. 

Signal Conditioning: Circuitry (like an op-amp amplifier) that modifies the 

sensor’s output signal (e.g., amplifies weak signals) so it is suitable for the 

Arduino’s input pins. 

Arduino Microcontroller: The central processing unit (e.g., Arduino Uno, Nano, 

Mega) with a built-in Analog-to-Digital Converter (ADC) to digitize the signals. 

Communication Interface: A method to transmit the digital data to a computer or 

storage device, most commonly via USB serial communication, I²C, or SPI. 



RIHINI COLLEGE OF ENGINEERING AND TECHNOLOGY/24EE404/PRISCILLA 

 

Data Logging/Analysis Software: A program running on a connected computer 

(often written in Python, MATLAB, or using a special Excel macro like PLX-

DAQ) to receive, timestamp, display, and log the data to a file (e.g., CSV). 

Storage (Optional): An SD card shield can be used for standalone data logging 

without a constant PC connection.  

Key Steps for Data Acquisition 

 

The general process for acquiring data using an Arduino is: 

Hardware Setup: Connect your sensors to the appropriate Arduino pins (analog or 

digital), including any necessary signal conditioning circuitry. 

Programming the Arduino (Firmware): Write an Arduino sketch in the Arduino 

IDE to read the sensor data and send it over a communication channel (e.g., the 

Serial port). 

Software on the Host Computer: Run a program on your computer to open the 

serial port, read the incoming data, and save or display it in real-time. 



RIHINI COLLEGE OF ENGINEERING AND TECHNOLOGY/24EE404/PRISCILLA 

 

Data Analysis: The collected data (often in a CSV format) can then be imported 

into spreadsheet software like Microsoft Excel or LibreOffice Calc for analysis and 

visualization.  

Considerations for Performance 

 

Resolution: Standard Arduino boards have a 10-bit ADC, which might not be 

sufficient for high-precision applications. External high-resolution ADC modules 

(16-bit, 24-bit) can be easily integrated via I²C or SPI communication protocols to 

improve performance. 

Sampling Rate: The speed at which data can be acquired is limited by the ADC 

conversion time and the serial communication baud rate. Techniques like data 

averaging or using binary transmission can help maintain data integrity at higher 

speeds. 

Noise Reduction: Implementing a moving average in the source code can help 

reduce intrinsic noise from the ADC and electronic components.  

 


