
24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT 1

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

UNIT 1 BASICS OF C PROGRAMMING

Problem Solving Techniques: Introduction to Algorithm, Pseudo code, Flow Chart, Structure of

‘C’ program. C Tokens: Keywords, Data Types, Constants, Variables - Declaration - Qualifiers –

typedef

1.3 C TOKENS

A token in C can be defined as the smallest individual element of the C programming

language that is meaningful to the compiler. It is the basic component of a C program.

Types of Tokens in C

The tokens of C language can be classified into six types based on the functions they are

used to perform. The types of C tokens are as follows:

1. Keywords

2. Identifiers

3. Constants

4. Strings

5. Special Symbols

6. Operators

1. Keywords

The keywords are pre-defined or reserved words in a programming language. Each

keyword is meant to perform a specific function in a program.

You cannot redefine keywords. C language supports 32 keywords which are given

below:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

2. Identifiers

https://www.geeksforgeeks.org/keywords-in-c/

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT 1

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Identifiers are used as the general terminology for the naming of variables, functions, and

arrays. These are user-defined names consisting of an arbitrarily long sequence of letters and digits

with either a letter or the underscore (_) as a first character.

Identifier names must differ in spelling and case from any keywords. You cannot use

keywords as identifiers;

Rules for Naming Identifiers

Certain rules should be followed while naming c identifiers which are as follows:

• They must begin with a letter or underscore (_).

• They must consist of only letters, digits, or underscore. No other special character is allowed.

• It should not be a keyword.

• It must not contain white space.

• It should be up to 31 characters long as only the first 31 characters are significant.

For example,

Roll_no, num1, _age, contact_number1

• main: method name.

• a: variable name.

3. Constants

The constants refer to the variables with fixed values. They are like normal variables but

with the difference that their values cannot be modified in the program once they are defined.

Constants may belong to any of the data types.

Examples of Constants in C

4. Strings

Strings are nothing but an array of characters ended with a null character (‘\0’).

This null character indicates the end of the string. Strings are always enclosed in double

quotes. Whereas, a character is enclosed in single quotes in C and C++.

Examples of String

const int c_var = 20;

const float pi=3.14

https://www.geeksforgeeks.org/strings-in-c/

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT 1

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

5. Special Symbols

The following special symbols are used in C having some special meaning and thus, cannot

be used for some other purpose. Some of these are listed below:

• Brackets[]: Opening and closing brackets are used as array element references. These

indicate single and multidimensional subscripts.

• Parentheses(): These special symbols are used to indicate function calls and function

parameters.

• Braces{}: These opening and ending curly braces mark the start and end of a block of code

containing more than one executable statement.

• Comma (,): It is used to separate more than one statement like for separating parameters in

function calls.

• Colon(:): It is an operator that essentially invokes something called an initialization list.

• Semicolon(;): It is known as a statement terminator. It indicates the end of one logical entity.

That’s why each individual statement must be ended with a semicolon.

• Asterisk (*): It is used to create a pointer variable and for the multiplication of variables.

• Assignment operator(=): It is used to assign values and for logical operation validation.

• Pre-processor (#): The preprocessor is a macro processor that is used automatically by the

compiler to transform your program before actual compilation.

• Period (.): Used to access members of a structure or union.

• Tilde(~): Bitwise One’s Complement Operator.

6. Operators

Operators are symbols that trigger an action when applied to C variables and other objects.

The data items on which operators act are called operands. Depending on the number of

operands that an operator can act upon, operators can be classified as follows:

• Unary Operators: Those operators that require only a single operand to act upon are

known as unary operators. For Example increment and decrement operators

• Binary Operators: Those operators that require two operands to act upon are called binary

char str1[20] = {‘g’, ’e’, ‘e’, ‘k’, ‘s’, ‘f’, ‘o’, ‘r’, ‘g’, ’e’, ‘e’, ‘k’, ‘s’, ‘\0’};

char str2[20] = “c Programming”;

char str3[] = “C Concepts”;

https://www.geeksforgeeks.org/operators-in-c/

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT 1

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

operators. Binary operators can further are classified into:

1. Arithmetic operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Bitwise Operator

• Ternary Operator: The operator that requires three operands to act upon is called the ternary

operator. Conditional Operator(?) is also called the ternary operator.

