
24CS404 OPERATING SYSTEMS

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

SCHDULING POLICIES

1. What is SCHED_FIFO?

 SCHED_FIFO is a real-time scheduling policy in Linux.

 It stands for First-In-First-Out, and it is non-preemptive among same-

priority threads.

 Key characteristics:

1. Priority-based: Higher priority threads preempt lower priority threads.

2. FIFO within same priority: Threads with the same priority run in the

order they become runnable.

3. Non-preemptive among same priority: Once a thread starts

executing, it runs until it blocks, yields, or finishes.

4. Real-time policy: It is meant for time-critical tasks, not regular user

tasks.

2. How it works

1. Each thread is assigned a priority (1–99 in Linux, higher number = higher

priority).

2. Scheduler always runs the highest-priority runnable thread.

3. If two threads have the same priority, they execute in the order they

became ready.

4. The thread keeps running until:

o It blocks (e.g., waiting for I/O), or

o It yields voluntarily, or

o It finishes execution.

Key Observations for SCHED_FIFO:

 Higher priority threads preempt lower-priority threads.

 Threads of same priority execute FIFO.

 Waiting time is affected by preemption.

1. Process Details:

Process Arrival Time (AT) Burst Time (BT) Priority

P1 0 6 40

P2 2 8 60

P3 4 7 50

P4 5 3 60

24CS404 OPERATING SYSTEMS

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

Policy: SCHED_FIFO (higher priority preempts lower, same priority → FIFO)

2. Determine Execution Order:

Step by step:

1. Time 0: Only P1 has arrived → P1 starts.

2. Time 2: P2 arrives (priority 60 > 40) → preempts P1 → P2 runs.

3. Time 4: P3 arrives (priority 50 < 60) → P2 continues.

4. Time 5: P4 arrives (priority 60 = P2) → P2 continues (FIFO: P2 arrived

earlier).

5. Time 10: P2 finishes (ran 2–10) → choose next highest priority: P4 (priority

60) → P4 runs.

6. Time 13: P4 finishes → next highest priority: P3 (priority 50) → P3 runs.

7. Time 20: P3 finishes → remaining: P1 (priority 40) → P1 resumes.

8. Time 24: P1 finishes.

3. Completion Time (CT):

Process CT

P1 24

P2 10

P3 20

P4 13

4. Turnaround Time (TAT)

TAT =CT−AT

Process CT AT TAT = CT-AT

P1 24 0 24

P2 10 2 8

P3 20 4 16

P4 13 5 8

5. Waiting Time (WT)

Process TAT BT WT = TAT-BT

P1 24 6 18

P2 8 8 0

P3 16 7 9

P4 8 3 5

6. Average Waiting Time (AWT)

 AWT=(18+0+9+5)/4=32/4=8 ms

7. Gantt Chart:

P1 P2 P4 P3 P1

 0 2 10 13 20 24

24CS404 OPERATING SYSTEMS

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

Completely Fair Scheduler(CFS)

What is CFS?

 CFS stands for Completely Fair Scheduler.

 It is the default scheduler for Linux (for normal, non-real-time tasks).

 Goal: Divide CPU time fairly among all processes.

Key features:

1. Fairness: Each process gets a fair share of CPU time proportional to its

weight (priority).

2. No fixed time slices: Uses virtual runtime instead of fixed quanta.

3. Preemption: Higher priority or “less virtual runtime” processes can preempt

the current one.

4. Red-black tree: Linux maintains all runnable tasks in a balanced tree,

sorted by virtual runtime.

2. How CFS Works:

1. Each process has a weight based on its nice value (priority).

2. Virtual runtime (vruntime): Time a process has spent on CPU weighted

by its priority.

o Lower vruntime → process has received less CPU → higher chance to

run next.

3. The scheduler always picks the process with the minimum vruntime.

4. Over time, all processes get a fair share of CPU.

Process Arrival Time (AT) Burst Time (BT)

P1 0 6

P2 2 8

P3 4 7

P4 5 3

Step 1: Assume Target Latency

 Target Latency (TL) = 12 ms

Step 2: Calculate Time Slice:

 Time Slice=Target Latency/Number of runnable processes

24CS404 OPERATING SYSTEMS

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

Time Slice at Different Times:

Time Runnable Processes Time Slice

0 P1 12 / 1 = 12 ms

2 P1, P2 12 / 2 = 6 ms

4 P1, P2, P3 12 / 3 = 4 ms

5 P1, P2, P3, P4 12 / 4 = 3 ms

Step 3: CFS Scheduling (Using vruntime)

 0 – 2

 Only P1 is available

 P1 executes

 0 ──── 2 → P1

 2 – 8

 Runnable: P1, P2

 Time slice = 6 ms

 P2 has lower vruntime

 P2 runs for 6 ms

 2 ──── 8 → P2

Remaining BT of P2 = 2 ms

 8 – 11

 Runnable: P1, P2, P3, P4

 Time slice = 3 ms

 P4 has least vruntime

 P4 runs completely (3 ms)

 8 ──── 11 → P4

 11 – 14

 Runnable: P1, P2, P3

 Time slice = 4 ms

 P3 has lowest vruntime

 P3 runs for 3 ms

 11 ──── 14 → P3

Remaining BT of P3 = 4 ms

24CS404 OPERATING SYSTEMS

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

 14 – 16

 Runnable: P1, P2, P3

 P2 has lowest vruntime

 P2 runs remaining 2 ms (finishes)

 14 ──── 16 → P2

 16 – 20

 Runnable: P1, P3

 Time slice = 6 ms

 P3 has lower vruntime

 P3 runs remaining 4 ms (finishes)

 16 ──── 20 → P3

 20 – 24

 Only P1 remains

 P1 finishes

 20 ──── 24 → P1

Final Gantt Chart (Derived Using Time Slice)

Gantt Chart:

P1 P2 P4 P3 P2 P3 P1

 0 2 8 11 14 16 20 24

Process
Completion

Time (CT)

Turn Around Time

TAT = CT−AT

Waiting Time

WT = TAT−BT

P1 24 24 − 0 = 24 18

P2 16 16 − 2 = 14 6

P3 20 20 − 4 = 16 9

P4 11 11 − 5 = 6 3

	SCHDULING POLICIES
	1. What is SCHED_FIFO?
	2. How it works
	1. Process Details:
	2. Determine Execution Order:
	3. Completion Time (CT):
	4. Turnaround Time (TAT)
	5. Waiting Time (WT)
	6. Average Waiting Time (AWT)
	Step 1: Assume Target Latency
	Time Slice at Different Times:

	Step 3: CFS Scheduling (Using vruntime)
	 0 – 2
	 2 – 8
	 8 – 11
	 11 – 14
	 14 – 16
	 16 – 20
	 20 – 24

	Final Gantt Chart (Derived Using Time Slice)

