24CS404 OPERATING SYSTEMS

SCHDULING POLICIES
1. What is SCHED_FIFO?
« SCHED_FIFO is a real-time scheduling policy in Linux.
o It stands for First-In-First-Out, and it is non-preemptive among same-
priority threads.
« Key characteristics:
1. Priority-based: Higher priority threads preempt lower priority threads.
2. FIFO within same priority: Threads with the same priority run in the
order they become runnable.
3. Non-preemptive among same priority: Once a thread starts
executing, it runs until it blocks, yields, or finishes.
4. Real-time policy: It is meant for time-critical tasks, not regular user
tasks.
2. How it works
1. Each thread is assigned a priority (1-99 in Linux, higher number = higher
priority).
2. Scheduler always runs the highest-priority runnable thread.
3. If two threads have the same priority, they execute in the order they
became ready.
4. The thread keeps running until:
o It blocks (e.g., waiting for I/0), or
o It yields voluntarily, or
o It finishes execution.
Key Observations for SCHED_FIFO:
« Higher priority threads preempt lower-priority threads.
o Threads of same priority execute FIFO.
o Waiting time is affected by preemption.

1. Process Details:

Process|Arrival Time (AT)|Burst Time (BT)|Priority
P1 0 6 40
P2 2 8 60
P3 4 7 50
P4 5 3 60

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

24CS404 OPERATING SYSTEMS

Policy: SCHED_FIFO (higher priority preempts lower, same priority — FIFO)
2. Determine Execution Order:
Step by step:
1. Time 0: Only P1 has arrived — P1 starts.
2. Time 2: P2 arrives (priority 60 > 40) — preempts P1 — P2 runs.
3. Time 4: P3 arrives (priority 50 < 60) — P2 continues.
4. Time 5: P4 arrives (priority 60 = P2) — P2 continues (FIFO: P2 arrived
earlier).
5. Time 10: P2 finishes (ran 2-10) — choose next highest priority: P4 (priority
60) — P4 runs.
6. Time 13: P4 finishes — next highest priority: P3 (priority 50) — P3 runs.
7. Time 20: P3 finishes — remaining: P1 (priority 40) — P1 resumes.
8. Time 24: P1 finishes.

3. Completion Time (CT): 4. Turnaround Time (TAT)
TAT =CT-AT
Process|CT Process|CT|AT|TAT = CT-AT
P1 24 P1 24(0 24
P2 10 P2 10| 2 8
P3 20 P3 20| 4 16
P4 13 P4 13| 5 8

5. Waiting Time (WT)

Process|TAT|BT|WT = TAT-BT
P1 24 || 6 18
P2 8 |8 0
P3 16 || 7 9
P4 8 |3 5
6. Average Waiting Time (AWT)
AWT=(18+0+9+5)/4=32/4=8 ms
7. Gantt Chart:
P1 P2 P4 P3 P1
0 2 10 13 20 24

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

24CS404 OPERATING SYSTEMS

Completely Fair Scheduler(CFS)
What is CFS?
« CFS stands for Completely Fair Scheduler.
o Itis the default scheduler for Linux (for normal, non-real-time tasks).
o Goal: Divide CPU time fairly among all processes.
Key features:
1. Fairness: Each process gets a fair share of CPU time proportional to its
weight (priority).
2. No fixed time slices: Uses virtual runtime instead of fixed quanta.
3. Preemption: Higher priority or “less virtual runtime” processes can preempt
the current one.
4. Red-black tree: Linux maintains all runnable tasks in a balanced tree,
sorted by virtual runtime.
2. How CFS Works:
1. Each process has a weight based on its nice value (priority).
2. Virtual runtime (vruntime): Time a process has spent on CPU weighted
by its priority.
o Lower vruntime — process has received less CPU — higher chance to
run next.
3. The scheduler always picks the process with the minimum vruntime.

4. Over time, all processes get a fair share of CPU.

Process|Arrival Time (AT)|Burst Time (BT)
P1 0 6
P2 2 8
P3 4 7
P4 5 3

Step 1: Assume Target Latency
Target Latency (TL) = 12 ms

Step 2: Calculate Time Slice:

Time Slice=Target Latency/Number of runnable processes

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

24CS404 OPERATING SYSTEMS

Time Slice at Different Times:

Time | Runnable Processes| Time Slice
0 P1 12/1 =12 ms
2 P1, P2 12/2 =6 ms
4 P1, P2, P3 12/3 =4 ms
5 P1, P2, P3, P4 12/4 =3 ms

Step 3: CFS Scheduling (Using vruntime)
v 0-2
« Only P1 is available
« P1 executes
0O——2-P1
v 2-8
e« Runnable: P1, P2
e« Time slice = 6 ms
« P2 has lower vruntime
e P2 runs for 6 ms
2——8 P2
Remaining BT of P2 = 2 ms

v 8-11
« Runnable: P1, P2, P3, P4
o Time slice = 3 ms
« P4 has least vruntime
e P4 runs completely (3 ms)
8§ ——11 P4

v 11 -14
« Runnable: P1, P2, P3
e« Time slice = 4 ms
« P3 has lowest vruntime
e P3runsfor 3 ms
11— 14 . P3
Remaining BT of P3 = 4 ms

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

24CS404 OPERATING SYSTEMS

v 14 - 16
« Runnable: P1, P2, P3
« P2 has lowest vruntime
e P2 runs remaining 2 ms (finishes)
14 —— 16 - P2

v 16 - 20
« Runnable: P1, P3
o Time slice = 6 ms
« P3 has lower vruntime
e P3 runs remaining 4 ms (finishes)
16 —— 20 - P3

v 20 -24
e« Only P1 remains
o P1 finishes
20— 24 - P1
Final Gantt Chart (Derived Using Time Slice)
Gantt Chart:

P1 P2 P4 P3 P2 P3 P1
0 2 8 11 14 16 20 24
Completion | Turn Around Time | Waiting Time
Process
Time (CT) TAT = CT-AT WT = TAT-BT
P1 24 24 - 0 =24 18
P2 16 16 -2 =14 6
P3 20 20— 4 =16 9
P4 11 11-5=6 3

ROHINI COLLEGE OF ENGINEERING &TECHNOLOGY

	SCHDULING POLICIES
	1. What is SCHED_FIFO?
	2. How it works
	1. Process Details:
	2. Determine Execution Order:
	3. Completion Time (CT):
	4. Turnaround Time (TAT)
	5. Waiting Time (WT)
	6. Average Waiting Time (AWT)
	Step 1: Assume Target Latency
	Time Slice at Different Times:

	Step 3: CFS Scheduling (Using vruntime)
	 0 – 2
	 2 – 8
	 8 – 11
	 11 – 14
	 14 – 16
	 16 – 20
	 20 – 24

	Final Gantt Chart (Derived Using Time Slice)

