
#include <stdio.h>

int main() {
// Declaring integers
int var1 = 1;

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

4.6.ARRAY OF POINTERS

What is an Array of Pointers?

Just like an integer array holds a collection of integer variables, an array of pointers
would hold variables of pointer type. It means each variable in an array of pointers is a pointer
that points to another address.

The name of an array can be used as a pointer because it holds the address to the first
element of the array. If we store the address of an array in another pointer, then it is possible to
manipulate the array using pointer arithmetic.

Create an Array of Pointers

To create an array of pointers in C language, you need to declare an array of pointers in
the same way as a pointer declaration. Use the data type then an asterisk sign followed by an
identifier (array of pointers variable name) with a subscript ([]) containing the size of the array.

In an array of pointers, each element contains the pointer to a specific type.

Example of Creating an Array of Pointers

The following example demonstrates how you can create and use an array of pointers.
Here, we are declaring three integer variables and to access and use them, we are creating an
array of pointers. With the help of an array of pointers, we are printing the values of the
variables.

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

int var2 = 2;
int var3 = 3;

// Declaring an array of pointers to integers
int *ptr[3];

// Initializing each element of
// array of pointers with the addresses of
// integer variables
ptr[0] = &var1;
ptr[1] = &var2;
ptr[2] = &var3;

// Accessing values
for (int i = 0; i < 3; i++) {
printf("Value at ptr[%d] = %d\n", i, *ptr[i]);

}

return 0;
}

Output

When the above code is compiled and executed, it produces the following result −

Value of var[0] = 10
Value of var[1] = 100
Value of var[2] = 200

There may be a situation when we want to maintain an array that can store pointers to an "int" or
"char" or any other data type available.

(a) An Array of Pointers to Integers

Here is the declaration of an array of pointers to an integer −

int *ptr[MAX];

It declares ptr as an array of MAX integer pointers. Thus, each element in ptr holds a pointer to
an int value.

Example

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

#include <stdio.h>

const int MAX = 3;

int main(){

int var[] = {10, 100, 200};
int i, *ptr[MAX];

for(i = 0; i < MAX; i++){
ptr[i] = &var[i]; /* assign the address of integer. */

}

for (i = 0; i < MAX; i++){
printf("Value of var[%d] = %d\n", i, *ptr[i]);

}

return 0;
}

#include <stdio.h>

const int MAX = 4;

int main(){

char *names[] =
{ "Zara Ali",

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

The following example uses three integers, which are stored in an array of pointers, as follows −

Output

When the above code is compiled and executed, it produces the following result −

Value of var[0] = 10
Value of var[1] = 100
Value of var[2] = 200

b) An Array of Pointers to Characters

You can also use an array of pointers to character to store a list of strings as follows −

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

"Hina Ali",
"Nuha Ali",
"Sara Ali"

};

int i = 0;

for(i = 0; i < MAX; i++){
printf("Value of names[%d] = %s\n", i, names[i]);

}

return 0;
}

Output

When the above code is compiled and executed, it produces the following result −

Value of names[0] = Zara Ali
Value of names[1] = Hina Ali
Value of names[2] = Nuha Ali
Value of names[3] = Sara Ali

 POINTER TO POINTER

We may have a pointer variable that stores the address of another pointer itself.

In the above figure, "a" is a normal "int" variable, whose pointer is "x". In turn, the variable stores

the address of "x".

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

Note that "y" is declared as "int **" to indicate that it is a pointer to another pointer variable.

Obviously, "y" will return the address of "x" and "*y" is the value in "x" (which is the address of

"a").

To obtain the value of "a" from "y", we need to use the expression "**y". Usually, "y" will be

called as the pointer to a pointer.

Example

Take a look at the following example −

Output

Run the code and check its output −

var: 10

Address of var: 951734452
ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

inttptr: 951734452

Address of intptr: 951734456

var: 10

Value at intptr: 10

ptrptr: 951734456

Address of ptrtptr: 951734464

intptr: 951734452

Value at ptrptr: 951734452
var: 10

*intptr: 10

**ptrptr: 10

 VOID POINTER

A void pointer is a pointer that has no associated data type with it. A void pointer can hold an

address of any type and can be typecasted to any type.

Example of Void Pointer in C

// C Program to demonstrate that a void pointer can hold the address of any type-castable type

#include <stdio.h>

int main()

{

int a = 10;

char b = 'x';

// void pointer holds address of int 'a'

void* p = &a;

// void pointer holds address of char 'b'

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

Compiler Error: 'void*' is not a pointer-to-object type

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

p = &b;

}

Properties of Void Pointers

1. void pointers cannot be dereferenced.

Example

The following program doesn’t compile.

// C Program to demonstrate that a void pointer cannot be dereferenced

#include <stdio.h>

int main()

{

int a = 10;

void* ptr = &a;

printf("%d", *ptr);

return 0;

}

Output

The below program demonstrates the usage of a void pointer to store the address of an integer

variable and the void pointer is typecasted to an integer pointer and then dereferenced to access

the value. The following program compiles and runs fine.

// C program to dereference the void pointer to access the value

#include <stdio.h>

int main()

{

int a = 10;

void* ptr = &a;

// The void pointer 'ptr' is cast to an integer pointer using '(int*)ptr' Then, the value is
dereferenced with `*(int*)ptr` to get the value at that memory location

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

printf("%d", *(int*)ptr);

return 0;

}
Output 10

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

24CS201 PROGRAMMING FOR PROBLEM SOLVING USING C – UNIT IV

ROHINI COLLEGE OF ENGINEERING AND TECHNOLOGY

	4.6.ARRAY OF POINTERS
	What is an Array of Pointers?
	Create an Array of Pointers
	Example of Creating an Array of Pointers
	Output
	(a) An Array of Pointers to Integers
	Example
	Output
	b) An Array of Pointers to Characters
	Output

	​ POINTER TO POINTER
	​ VOID POINTER
	Example of Void Pointer in C
	Properties of Void Pointers
	// C Program to demonstrate that a void pointer cannot be dereferenced
	Output
	// C program to dereference the void pointer to access the value

