

ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 1

24CS402- DATA STRUCTURES USING C++

2.9 THE STACK ADT

Stack Model :

 A stack is a linear data structure which follows Last In First Out

(LIFO) principle.

 LIFO principle means the last inserted element is the first one to be

removed.

 Insertion and deletion occur at only one end called the Top.

Examples: Pile of coins., a Stack of books, Laundry pile, Undo operation in

applications.

OPERATIONS ON STACK

The fundamental operations performed on a stack are

1. Push

2. Pop

ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 2

24CS402- DATA STRUCTURES USING C++

1. PUSH :

 The process of inserting a new element to the top of the stack.

o Before insertion, it is necessary to check whether the stack is full.

o If the stack is full, insertion cannot be performed.

o Attempting to insert an element when the stack is full is called Stack

Overflow.

 For every push operation the Top is incremented by 1.

Note: Stack overflow is the condition to be checked before insertion an element in to

the stack.

2. POP :

 The process of deleting an element from the top of stack is called

pop operation.

o Before deletion, it is necessary to check whether the stack is

empty.

o If the stack is empty, deletion cannot be performed.

o Attempting to remove an element from an empty stack is called Stack

Underflow.

ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 3

24CS402- DATA STRUCTURES USING C++

 After every pop operation the Top pointer is decremented by 1.

Note: Stack underflow is the condition to be checked before removing an

element from the stack.

IMPLEMENTATION OF STACK ADT

Stack can be implemented

using

1. Array 2. Linked List.

1. Array Implementation

 In this type, the stack is implemented using a fixed-size array.

 Elements are stored sequentially in the array.

 The top keeps track of the last inserted element.

Steps Involved in Stack Operations

1. Initialize the Stack

 Set Top = -1 to indicate that the stack is empty.

2. Push (Insertion) Operation

 Step 1: Check if the stack is full.

 Step 2: If not full, increment Top by 1.

ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 4

24CS402- DATA STRUCTURES USING C++

 Step 3: Insert the new element at position stack[Top].

 Step 4: If the stack is full, display Stack Overflow.

3. Pop (Deletion) Operation

 Step 1: Check if the stack is empty.

 Step 2: If not empty, return the value at stack[Top].

 Step 3: Decrement Top by 1.

 Step 4: If the stack is empty, display Stack Underflow.

4. Peek / Top Element (Optional)

 Check if the stack is empty.

 If not empty, return the element at stack[Top] without removing it.

5. isEmpty() and isFull() Checks

 isEmpty: Returns true if Top = -1.

 isFull: Returns true if Top = MAX-1 (for array-based stack).

C++ implementation of each stack function

Check for Stack Overflow (isFull())

int isFull()

 {

 return top == MAX - 1;

 }

Check for Stack Underflow (isEmpty())

int isEmpty()

 {

 return top == -1;

 }

ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 5

24CS402- DATA STRUCTURES USING C++

 Push Operation (Insertion)

 void push(int element)

 {

 if(!isFull())

 {

 top++;

 stack[top] = element;

 cout << "Inserted " << element << " into stack\n";

 }

 else

 {

 cout << "Stack is full. Cannot insert.\n";

 }

 }

Pop Operation (Deletion):

void pop()

 {

 if(!isEmpty())

 {

 cout << "Deleted " << stack[top] << " from stack\n";

 top--;

 }

 else

 {

 cout << "Stack is empty. Cannot delete.\n";

 }

 }

Display Stack Elements:

 void display()

ROHINI COLLEGE OF ENINEERING AND TECHNOLOGY 6

24CS402- DATA STRUCTURES USING C++

 {

 if(isEmpty())

 {

 cout << "Stack is empty.\n";

 }

 else

 {

 cout << "Stack elements are:\n";

 for(int i = top; i >= 0; i--)

 cout << stack[i] << "\n";

 }

 }

Advantages of Stack

 Easy to implement

 Efficient insertion and deletion

 Requires less memory overhead

 Disadvantages:

 Size is fixed.

 Limited access to elements

 if the stack becomes full, stack overflow occurs.

Applications of Stack

 Function calls and recursion

 Expression evaluation

 Undo and Redo operations

 Reversing a string

 Checking balanced parentheses

