UNIT – I – RANDOM VARAIBLES

Random Experiment

An experiment whose output is uncertain even though all the outcomes are known.

Example: Tossing a coin, Throwing a fair die, Birth of a baby.

Sample Space:

The set of all possible outcomes in a random experiment. It is denoted by S.

Example:

For tossing a fair coin, $S = \{H, T\}$

For throwing a fair die, $S = \{1, 2, 3, 4, 5, 6, \}$

For birth of a baby, $S = \{M, F\}$

Event:

A subset of sample space is event. It is denoted by A. SERVE OPTIMIZE OUTSPREED.

Mutually Exclusive Events:

Two events A and B are said to be mutually exclusive events if they do not occur simultaneously. If A and B are mutually exclusive, then $A \cap B = \Phi$

HULAM, KANYAKUN

Example:

Tossing two unbiased coins $S = \{HH, HT, TH, TT\}$

(i) Let
$$A = \{HH\}, B = \{HT\}$$

$$A \cap B = \{H\} \neq \Phi$$

Then A and B are not mutually exclusive.

(i) Let
$$A = \{HH\}, B = \{TT\}$$

$$A \cap B = \Phi$$

Then A and B are mutually exclusive.

Probability:

Probability of an event A is $P(A) = \frac{n(A)}{n(S)}$

i.e.,
$$P(A) = \frac{number\ of\ cases\ favourable\ to\ A}{Total\ number\ of\ cases}$$

Axioms of Probability:

(i)
$$0 \le P(A) \le 1$$

(ii)
$$P(S) = 1$$

(iii) $P(A \cup B) = P(A) + P(B)$, if A and B are mutually exclusive.

Note:

(i)
$$P(\phi) = 0$$

(ii)
$$P(\overline{A}) = 1 - P(A)$$
, for any event A

(iii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
, for any two events A and B.

Independent events:

Two events A and B are said to be independent if occurrence of A does not affect the occurrence of B.

Condition for two events and B are independent:

$$P(A \cap B) = P(A) P(B)$$

Conditional Probability:

If the probability of the event A provided the event B has already occurred is called the conditional probability and is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, provided $P(B) \neq 0$

The probability of an event B provided A has occurred already is given by

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
, provided $P(A) \neq 0$

Random Variables:

A random variable is a function that assign a real number for all the outcomes in the sample space of a random experiment.

Example:

Toss two coins then the sample space $S = \{HH, HT, TH, TT\}$

Now we define a random variable X to denote the number of heads in 2 tosses.

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

$$X(HH) = 2$$

$$X(HT) = 1$$

$$X(TH) = 1$$

$$X(TT) = 0$$

Types of Random Variables:

- (i) Discrete Random Variables
- (ii) Continuous Random Variables

Probability mass function (PMF):

Let X be discrete random variable. Then $P(X = x_i) = p(x_i) = p_i$ is said to be a Probability mass function of X, if

(i)
$$0 \le p(x_i) \le 1$$

(ii)
$$\sum_i p(x_i) = 1$$

The collection of pairs $\{x_i, p_i\}$, i = 1, 2, 3, ... is called the probability distribution of the random variable X, which is sometimes in the form of a table as given below:

$X = x_i$	\bar{x}_1	x_2	 x_r	
$P(X = x_i)$	p_1	p_2	 p_r	

Problems on Discrete Random Variables

1.A Discrete Random Variable X has the following probability distribution

X	0	1	2	3	4	5	6	7	8
P(x)	a	3a	5a	7a	9a	11a	13a	15a	17a

- (i) Find the value of "a".
- (ii) Find P[X < 3], P[0 < X < 3], $P[X \ge 3]$
- (iii) Find the distribution of X: |X| = F

Solution:

(i) We know that
$$\sum P(x) = 1$$

$$\Rightarrow a + 3a + 5a + 7a + 9a + 11a + 13a + 15a + 17a = 1$$

$$\Rightarrow 81a = 1$$

$$\Rightarrow a = \frac{1}{81}$$

(ii)
$$P[X < 3] = P[X = 0] + P[X = 1] + P[X = 2]$$

$$= a + 3a + 5a$$

$$P[0 < X < 3] = P[X = 1] + P[X = 2]$$

$$= 3a + 5a$$

$$=8a$$

$$=\frac{8}{81}$$

$$P[X \ge 3] = 1 - P[X < 3]$$

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

$$= 1 - \frac{9}{81}$$
$$= \frac{72}{81}$$

(iii) Distribution of X:

X	P(x)	$\mathbf{F}(\mathbf{X}) = \mathbf{P}[\mathbf{X} \le x]$
0	a	$F(0) = P[X \le 0] = \frac{1}{81}$
1	3a	$F(1) = P[X \le 1] = F(0) + P(1) = \frac{1}{81} + \frac{3}{81} = \frac{4}{81}$
2	5a - 7	$F(2) = P[X \le 2] = F(1) + P(2) = \frac{4}{81} + \frac{5}{81} = \frac{9}{81}$
3	7a	$F(3) = P[X \le 3] = F(2) + P(3) = \frac{9}{81} + \frac{7}{81} = \frac{16}{81}$
4	9a	$F(4) = P[X \le 4] = F(3) + P(4) = \frac{16}{81} + \frac{9}{81} = \frac{25}{81}$
5	11a	$F(5) = P[X \le 5] = F(4) + P(5) = \frac{25}{81} + \frac{11}{81} = \frac{36}{81}$
6	13a	$F(6) = P[X \le 6] = F(5) + P(6) = \frac{36}{81} + \frac{13}{81} = \frac{49}{81}$
7	15a	$F(7) = P[X \le 7] = F(6) + P(7) = \frac{49}{81} + \frac{15}{81} = \frac{64}{81}$
8	17a	$F(8) = P[X \le 8] = F(7) + P(8) = \frac{64}{81} + \frac{17}{81} = \frac{81}{81}$

2. A Discrete Random Variable X has the following probability distribution

X	0	1	2	3	4	5	6	7
P(x)	0	k	2k	2k	3k	k^2	$2k^2$	$7k^2+k$

- Find the value of "k". (i)
- Find P[X < 6], P[1 < X < 5], $P[X \ge 6]$, P[X > 2](ii)
- Find P[1.5 < X < 4.5 / X > 2](iii)
- Find the distribution of X and find the value of k if $P[X < k] > \frac{1}{2}$ (iv)

Solution:

(i)

(i) We know that
$$\sum P(x) = 1$$

 $\Rightarrow 0 + k + 2k + 2k + 3k + k^2 + 2k^2 + 7k^2 + k = 1$
 $\Rightarrow 10k^2 + 9k = 1$
 $\Rightarrow 10k^2 + 9k - 1 = 0$

$$\Rightarrow (k+1)(10k-1) = 0$$

$$\Rightarrow k = -1 (or)k = \frac{1}{10}$$

$$\Rightarrow k = -1 (or)k = \frac{1}{10}$$

(ii)
$$P[X \ge 6] = P[X = 6] + P[X = 7]$$

= $2k^2 + 7k^2 + k$
= $9k^2 + k$

$$=\frac{19}{100}$$

 $=\frac{9}{100}+\frac{1}{10}$

(iii)
$$P[X < 6] = 1 - P[X \ge 6]$$

$$= 1 - \frac{19}{100}$$
$$= \frac{81}{100}$$

(iv)
$$P[1 < X < 5] = P[X = 2] + P[X = 3] + P[X = 4]$$

= $2k + 2k + 3k$
= $7k$ GINEE

$$=\frac{7}{10}$$

(v)
$$P[1.5 < X < 4.5 / X > 2] = \frac{P[1.5 < X < 4.5 \cap X > 2]}{P[X > 2]}$$

$$= \frac{P[2 < X < 4.5]}{P[X > 2]}$$

$$= \frac{P[X = 3] + P[X = 4]}{P[X > 2]}$$

$$= \frac{\frac{5}{10}}{\frac{7}{10}}$$

OBSERVE OPTIMIZE OUTSPREAD Distribution of X:

X	P(x)	$\mathbf{F}(\mathbf{X}) = \mathbf{P}[\mathbf{X} \le \mathbf{x}]$
0	0	$F(0) = P[X \le 0] = 0$
1	k	$F(1) = P[X \le 1] = F(0) + P(1) = 0 + \frac{1}{10} = \frac{1}{10}$

2	2k	$F(2) = P[X \le 2] = F(1) + P(2) = \frac{1}{10} + \frac{2}{10} = \frac{3}{10}$
3	2k	$F(3) = P[X \le 3] = F(2) + P(3) = \frac{3}{10} + \frac{2}{10} = \frac{5}{10}$
4	3k	$F(4) = P[X \le 4] = F(3) + P(4) = \frac{5}{10} + \frac{3}{10} = \frac{8}{10}$
5	k^2	$F(5) = P[X \le 5] = F(4) + P(5) = \frac{8}{10} + \frac{1}{100} = \frac{81}{100}$
6	2k ²	$F(6) = P[X \le 6] = F(5) + P(6) = \frac{81}{100} + \frac{2}{100} = \frac{83}{100}$
7	$7k^2 + k$	$F(7) = P[X \le 7] = F(6) + P(7) = \frac{83}{100} + \frac{7}{100} + \frac{1}{10} = \frac{100}{100}$

The value of k = 4 when $P[X < k] > \frac{1}{2}$

3. If the random variable X takes the values 1, 2, 3 and 4 such that 2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4). Find the probability distribution.

Solution:

Let
$$2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4) = k$$

$$\Rightarrow 2P(X = 1) = k$$

$$\Rightarrow P(X = 1) = \frac{k}{2}$$

$$\Rightarrow 3P(X = 2) = k$$

$$\Rightarrow P(X = 2) = \frac{k}{3}$$

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

$$\Rightarrow P(X=3)=k$$

$$\Rightarrow 5P(X=3)=k$$

$$\Rightarrow P(X=3) = \frac{k}{5}$$

We know that $\sum P(x) = 1$

$$\Rightarrow P(1) + P(2) + P(3) + P(4) = 1$$

$$\Rightarrow \frac{k}{2} + \frac{k}{3} + k + \frac{k}{5} = 1$$

$$\Rightarrow \frac{15k+10k+30k+6k}{30} = 1$$

$$\Rightarrow \frac{61k}{30} = 1$$

$$\Rightarrow k = \frac{30}{61}$$

The Probability Distribution is

X	1	2	3	4
	A Committee		-	
P(x)	$\frac{k}{-} = \frac{1}{-} \times \frac{30}{-} = \frac{15}{-}$	$\frac{k}{k} = \frac{1}{1} \times \frac{30}{10} = \frac{10}{10}$	$TSR = \frac{30}{61}$	$\frac{k}{-} = \frac{1}{-} \times \frac{30}{-} = \frac{6}{-}$
	2 2 61 61	3 3 61 61	61	5 5 61 61

4. Suppose that the random variable X assumes three values 0, 1 and 2 with probabilities 1/3, 1/6 and 1/2 respectively. Obtain the distribution function of X. Solution:

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

Values of $X = x$	0	1	2
P(x)	1/3	1/6	1/2
	P(0)	P(1)	P(2)

The distribution of X

X	P(x)	$\mathbf{F}(\mathbf{X}) = \mathbf{P}[\mathbf{X} \le \mathbf{x}]$
		O' A
0	047	$F(0) = P[X \le 0] = \frac{1}{3}$
1	(V)	$F(1) = P[X \le 1] = F(0) + P(1) = \frac{1}{3} + \frac{1}{6} = \frac{1}{2}$
2	2k	$F(2) = P[X \le 2] = F(1) + P(2) = \frac{1}{2} + \frac{1}{2} = 1$

Mathematical expectation for discrete random variable

Note:

(i)
$$E(c) = c$$

OBSERVE OPTIMIZE OUTSPREAD

(ii)
$$Var(c) = 0$$

(iii)
$$E(aX) = aE(X)$$

(iv)
$$E(aX + b) = aE(X) + b$$

(v)
$$Var(aX) = a^2 Var(X)$$

(vi)
$$Var(aX \pm b) = a^2 Var(X)$$

Problems:

If Var(X) = 4, find Var(4X + 5), where X is a random variable.

Solution:

We know that $Var(aX + b) = a^2Var(X)$

Here
$$a = 4$$
, $Var(X) = 4$

$$Var(4X + 5) = 4^{2}Var(X) = 16 \times 4 = 64$$

Continuous Random Variable:

If X is a random variable4 which can take all the values in an interval then X is called continuous random variable.

Properties of Probability Density Function:

The Probability density function of the random variable X denoted by f(x) has the following properties.

OBSERVE OPTIMIZE OUTSPREA

(i)
$$f(x) \ge 0$$

(ii)
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Cumulative Distribution Function (CDF):

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f(x) dx$$

Properties of CDF:

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

(i)
$$F(-\infty) = 0$$

(ii)
$$F(\infty) = 1$$

(iii)
$$\frac{d}{dx}[F(x)] = f(x)$$

(iv)
$$P(X \le a) = F(a)$$

(v)
$$P(X > a) = 1 - F(a)$$

(vi)
$$P(a \le X \le b) = F(b) - F(a)$$

Problems on Continuous Random Variables:

1. A continuous random variable X has a density function $f(x) = \frac{K}{1+x^2}$, $-\infty \le$

 $X \leq \infty$. Find the values of K.

Solution:

We know that $\int_{-\infty}^{\infty} f(x)dx = 1$

$$\Rightarrow \int_{-\infty}^{\infty} \frac{K}{1+x^2} dx = 1$$
OBSERVE OPTIMIZE OUTSPREAD
$$\Rightarrow K \int_{-\infty}^{\infty} \frac{dx}{1+x^2} = 1$$

$$\Rightarrow K \int_{-\infty}^{\infty} \frac{dx}{1+x^2} = 1$$

$$\Rightarrow K[tan^{-1}x]_{-\infty}^{\infty} = 1$$

$$\Rightarrow K[tan^{-1} \infty - tan^{-1}(-\infty)] = 1$$

$$\Rightarrow K\left[\frac{\pi}{2} + \frac{\pi}{2}\right] = 1$$

$$\Rightarrow K\left[\frac{2\pi}{2}\right] = 1$$

$$\Rightarrow K = \frac{1}{\pi}$$

- 2. If a random variable X has PDF $f(x) = \begin{cases} \frac{1}{4}, |x| < 2 \\ 0, |x| > 2 \end{cases}$ Find (i) P[X < 1]
 - P[|X| > 1] (iii) P[2X + 3 > 5](ii)

Solution:

(i)
$$P[X < 1] = \int_{-2}^{1} f(x) dx$$

$$= \int_{-2}^{1} \frac{1}{4} dx$$

$$= \frac{1}{4} \ [x]_{-2}^{1}$$

$$= \frac{1}{4}[1-(-2)]$$

 $=\frac{1}{4}[1-(-2)]_{(AM, KAN)}$

$$=\frac{3}{4}$$

 $P[|X| > 1] = 1^{\frac{C}{N}} P[+1 \le X \le 1] E \text{ OUTSPREAD}$ (ii)

$$=1-\int_{-1}^1 f(x)dx$$

$$= 1 - \int_{-1}^{1} \frac{1}{4} dx$$

$$=1-\frac{1}{4}\,[x]_{-1}^{1}$$

$$=1-\frac{1}{4}[1-(-1)]$$

$$= 1 - \frac{2}{4}$$
$$= \frac{2}{4}$$

(iii)
$$P[2X + 3 > 5] = P[2X > 5 - 3]$$

$$= P\left[X > \frac{5-3}{2}\right]$$

$$= P\left[X > \frac{1}{2}\right] \text{ NEE}$$

$$= P[X > 1]$$

$$= \int_{1}^{2} \frac{1}{4} dx$$

$$= \int_{1}^{2} \frac{1}{4} dx$$

$$= \frac{1}{4} [x]_{1}^{2}$$

$$= \frac{1}{4} [2 - (1)] = \frac{1}{4}$$

Mathematical expectation of continuous random variables

(i)
$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

(ii)
$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx_{\text{RVE OPTIMIZE OUTSPREAD}}$$

(iii)
$$Var(X) = E(X^2) - E[(X)]^2$$

Problems:

1. Let X be a continuous random variable with probability density function f(x) = kx(2-x), 0 < x < 2. Find (i) k (ii) mean (iii) variance (iv) cumulative distribution function of X (v) rth moment.

Solution:

(i) To find k

$$\int_0^2 f(x)dx = 1 \Rightarrow k \int_0^2 (2x - x^2)dx = 1$$

$$\Rightarrow k \left[\frac{2x^2}{2} - \frac{x^3}{3} \right]_0^2 = 1$$

$$\Rightarrow k \left[4 - \frac{8}{3} \right] = 1$$

$$\Rightarrow k = \frac{3}{4}$$

(ii) To calculate mean of X

$$E(X) = \int_0^2 x f(x) dx$$

$$= \int_0^2 x^2 \frac{3}{4} (2 - x) dx$$

$$= \frac{3}{4} \int_0^2 (2x^2 - x^3) dx$$

$$= \frac{3}{4} \left[\frac{2x^3}{3} - \frac{x^4}{4} \right]_0^2$$

$$= \frac{3}{4} \left(\frac{16}{3} - 4 \right)$$

(iii) To calculate variance of \boldsymbol{X}

 $=\frac{3}{4}\times\frac{4}{3}=1$

$$E(X^{2}) = \int_{0}^{2} x^{2} f(x) dx$$

$$= \int_{0}^{2} x^{3} \frac{3}{4} (2 - x) dx$$

$$= \frac{3}{4} \int_{0}^{2} (2x^{3} - x^{4}) dx$$

$$= \frac{3}{4} \left[\frac{2x^{4}}{4} - \frac{x^{5}}{5} \right]_{0}^{2} \text{ IGINEF}$$

$$=\frac{3}{4}\left(8-\frac{32}{5}\right)$$

$$=\frac{3}{4}\times\frac{8}{5}=\frac{6}{5}$$

$$Var(X) = E(X^{2}) - E[(X)]^{2}$$
$$= \frac{6}{5} - 1 = \frac{1}{5}$$

(iv) To calculate CDF of X

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f(x) dx$$

$$O_{B} = \int_{0}^{x} f(x)dx$$

$$= \int_{0}^{x} \frac{3}{4}x(2-x)dx$$

$$= \frac{3}{4} \int_{0}^{x} (2x-x^{2})dx$$

$$= \frac{3}{4} \left[\frac{2x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{x}$$

$$= \frac{3}{4} \left(x^{2} - \frac{x^{3}}{2} \right)$$

$$= \frac{1}{4}(3x^2 - x^3)$$

$$F(x) = \begin{cases} 0; & x < 0 \\ \frac{1}{4}(3x^2 - x^3); & 0 \le x < 2 \\ 1; & x \ge 2 \end{cases}$$

(v) To find the rth moment:

$$E(x^{r}) = \int_{-\infty}^{\infty} x^{r} f(x) dx$$

$$= \int_{0}^{2} x^{r} \frac{3}{4} x(2 - x) dx$$

$$= \frac{3}{4} \int_{0}^{2} (2x^{r+1} - x^{r+2}) dx$$

$$= \frac{3}{4} \left[\frac{2x^{r+2}}{r+2} - \frac{x^{r+3}}{r+3} \right]_{0}^{2}$$

$$= \frac{3}{4} \left[\left(2\frac{2^{r+2}}{r+2} - \frac{2^{r+3}}{r+3} \right) - (0 - 0) \right]$$

$$= \frac{3}{4} \times 2^{r} 2^{2} \left[\frac{1}{r+2} - \frac{1}{r+3} \right]$$

= 6 ·
$$\frac{2^r}{OBS_{ERVE}^{(r+2)(r+3)}}$$

2. The probability distribution function of a random variable X is

$$f(x) = \begin{cases} x; & 0 < x < 1 \\ 2 - x; & 1 < x < 2 \text{ Find the cdf of X.} \\ 0; & x > 2 \end{cases}$$

Solution:

We know that c.d.f $F(x) = \int_{-\infty}^{x} f(x)dx$

(i) When 0 < x < 1

$$F(x) = \int_{-\infty}^{0} f(x)dx + \int_{0}^{x} f(x)dx$$
$$= 0 + \int_{0}^{x} x dx$$
$$= \left[\frac{x^{2}}{2}\right]_{0}^{x}$$
$$= \frac{x^{2}}{2} - 0$$
$$= \frac{x^{2}}{2}$$

(ii) When 1 < x < 2

$$F(x) = \int_{-\infty}^{0} f(x)dx + \int_{0}^{1} f(x)dx + \int_{1}^{x} f(x)dx$$

$$= 0 + \int_{0}^{1} f(x)dx + \int_{1}^{x} x dx$$

$$= \left[\frac{x^{2}}{2}\right]_{0}^{1} + \left[2x - \frac{x^{2}}{2}\right]_{1}^{x}$$

$$= \left(\frac{1}{2} - 0\right) + \left[\left(2x - \frac{x^{2}}{2}\right) - \left(2 - \frac{1}{2}\right)\right]$$

$$= \frac{1}{2} + 2x - \frac{x^{2}}{2} - \frac{3}{2}$$

$$= 2x - \frac{x^{2}}{2} - 1$$

(iii) When x > 2

$$F(x) = \int_{-\infty}^{0} f(x)dx + \int_{0}^{1} f(x)dx + \int_{1}^{2} f(x)dx + \int_{2}^{x} f(x)dx$$

$$= 0 + \int_0^1 f(x)dx + \int_1^2 f(x)dx + \int_2^x x \, dx$$

$$= 0 + \int_0^1 x \, dx + \int_1^2 (2 - x)dx + 0$$

$$= \left[\frac{x^2}{2}\right]_0^1 + \left[2x - \frac{x^2}{2}\right]_1^2$$

$$= \left(\frac{1}{2} - 0\right) + \left[(4 - 2) - \left(2 - \frac{1}{2}\right)\right] = 0$$

$$= \frac{1}{2} + 2 - \frac{3}{2} = 1$$

$$F(x) = \begin{cases} \frac{x^2}{2}; & 0 < x < 1 \\ 2x - \frac{x^2}{2} - 1; & 1 < x < 2 \\ -1; & x > 2 \end{cases}$$

3. The Cumulative distribution function of a random variable X is given by

$$F(x) = \begin{cases} 0; & x < 0 \\ x^2; & 0 \le x < \frac{1}{2} \\ 1 - \frac{3}{25}(3 - x)^2; & \frac{1}{2} \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

Find the pdf of X and evaluate $P(|X| \le 1)$ using both pdf and cdf.

Solution:

Given

$$F(x) = \begin{cases} 0; & x < 0 \\ x^2; & 0 \le x < \frac{1}{2} \\ 1 - \frac{3}{25}(3 - x)^2; \frac{1}{2} \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

Pdf id
$$f(x) = \frac{d}{dx}[F(x)]$$

$$f(x) = \begin{cases} 0; & x < 0 \\ 2x; & 0 \le x < \frac{1}{2} \\ \frac{6}{25}(3-x); \frac{1}{2} \le x < 3 \\ 0, & x \ge 3 \end{cases}$$

To find $P(|X| \le 1)$ using cdf:

$$P(|X| \le 1) = P(-1 \le X \le 1)$$

$$= F(1) - F(-1)$$

$$= \left[1 - \frac{3}{25}(3 - 1)^{2}\right] - 0$$

$$= 1 - \frac{12}{25}$$

$$= \frac{25 - 12}{25} = \frac{13}{25}$$

ULAM, KANYAKUS

To find $P(|X| \le 1)$ using pdf:

$$P(|X| \le 1) = P(-1 \le X \le 1)$$

$$= \int_{-1}^{1} f(x) dx$$

$$= \int_{-1}^{1} f(x) dx + \int_{0}^{\frac{1}{2}} f(x) dx + \int_{\frac{1}{2}}^{1} f(x) dx$$

$$= 0 + \int_{0}^{\frac{1}{2}} 2x \, dx + \int_{\frac{1}{2}}^{1} \frac{6}{25} (3 - x) dx$$

$$=2\left(\frac{x^2}{2}\right)_0^{\frac{1}{2}}+\frac{6}{25}\left[3x-\frac{x^2}{2}\right]_{\frac{1}{2}}^{1}$$

$$= \frac{1}{4} + \frac{6}{25} \left[3 - \frac{1}{2} - \frac{3}{2} + \frac{1}{8} \right]$$

$$=\frac{13}{25}$$

Moment Generating Function:

The moment generating function (MGF) of a random variable "X" (about origin) whose probability function f(x) is given by $M_X(t) = E(e^{tx})$

$$= \begin{cases} \int_{-\infty}^{\infty} e^{tx} f(x) dx, \text{ for a continuous random variable} \\ \sum_{x=-\infty}^{\infty} e^{tx} p(x), \text{ for a discrete probability distribution} \end{cases}$$

Problems:

DASERVE OPTIMIZE OUTSPREAD

1. If a random variable "X" has the MGF, $M_X(t) = \frac{2}{2-t}$, find the variance of X.

Solution:

Given
$$M_X(t) = \frac{2}{2-t} = 2(2-t)^{-1}$$

$$M_X'(t) = -2(2-t)^{-2}(-1)$$

$$=2(2-t)^{-2}$$

$$M_X'(t=0) = 2(2-0)^{-2} = \frac{2}{4} = \frac{1}{2}$$

$$M_X^{"}(t) = -4(2-t)^{-3}(-1)$$

$$=4(2-t)^{-3}$$

$$M_X''(t=0) = 4(2-0)^{-3} = \frac{4}{8} = \frac{1}{2}$$

$$Var(X) = E(X^2) - E[(X)]^2$$

$$= \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

Moments

The rth moment about origin is $\mu'_{\rm r} = E[x'_{\rm r}]$

First moment about origin $\mu'_1 = E[X] = E(X^2) - [E(X)]^2$

Variance $\sigma^2 = \mu_2' - (\mu_1')^2$

The rth moment about mean is $\mu_r = E[(X - \mu)^r]$, where μ is mean of X.

CHULAM, KANYAKUR

$$\Rightarrow \mu_1 = E[(X - \mu)^1]$$

$$= E[X] - E[\mu] = \mu - \mu = 0$$

$$\Rightarrow \mu_1 = 0$$

$$\Rightarrow \mu_2 = E[(X - \mu)^2]$$

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

$$= E[X^{2} + \mu^{2} - 2X\mu]$$

$$= E[X^{2}] + \mu^{2} - 2E[X]\mu$$

$$= E(X^{2}) + [E(X)]^{2} - 2E(X)E(X)$$

$$= E(X^{2}) + [E(X)]^{2} - 2[E(X)]^{2}$$

$$= E(X^{2}) - [E(X)]^{2} = \sigma^{2}$$

$$\Rightarrow \mu_2 = \sigma^2$$

1. If the probability density of X is given $f(x) = \begin{cases} 2(1-x) & 0 < x < 1 \\ 0 & otherwise \end{cases}$ Find

its rth moment about origin. Hence find evaluate $E[(2X+1)^2]$

Solution:

The rth moment about origin is given by

$$\mu'_{r} = E[x'_{r}] = \int_{0}^{1} x^{r} f(x) dx$$

$$= \int_{0}^{1} x^{r} 2(1 - x) dx$$

$$= 2 \int_{0}^{1} (x^{r} - x^{r+1}) dx$$

$$= 2 \left[\frac{x^{r+1}}{r+1} - \frac{x^{r+1+1}}{r+2} \right]_{0}^{1}$$

$$=2\left[\frac{1}{r+1}-\frac{1}{r+2}\right]$$

$$=2\left[\frac{(r+2)-(r+1)}{(r+2)(r+1)}\right] = \frac{2}{r^2+3r+2}$$

$$E[(2X + 1)^{2}] = E[4X^{2} + 4X + 1]$$

$$= 4E[X^{2}] + 4E[X] + 1$$

$$= 4\mu'_{2} + 4\mu'_{1} + 1 \text{ IGINEE}$$

$$= 4\frac{2}{2^{2}+3(2)+2} + 4\frac{2}{2^{2}+3(2)+2} + 1$$

$$= \frac{8}{12} + \frac{8}{6} + 1 = 3$$

$$\therefore E[(2X+1)^2] = 3$$

Moment Generating Function (MGF)

Let *X* be a random variable. Then the MGF of *X* is $M_X(t) = E[e^{tx}]$

If X is a discrete random variable, then the MGF is given by

$$OBSER_{V} \underbrace{M_{X}(t)}_{C} = \sum_{X} \underbrace{e^{tx}p(x)}_{C} \underbrace{pREAD}$$

If X is a continuous random variable, then the MGF is given by

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

Define MGF and why it is called so?

Solution:

Let X be a random variable. Then the MGF of X is $M_x(t) = E[e^{tX}]$.

Let *X* be a continuous random variable. Then

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx = \int_{-\infty}^{\infty} \left[1 + \frac{tx}{1!} + \frac{t^2x^2}{2!} + \cdots + \frac{t^rx^r}{r!} + \cdots \right] f(x) dx$$

$$= \int_{-\infty}^{\infty} \left[f(x) + \frac{tx}{1!} f(x) + \frac{t^2 x^2}{2!} f(x) + \cdots + \frac{t^r x^r}{r!} f(x) + \cdots \right] dx$$

$$= \int_{-\infty}^{\infty} f(x) dx + \frac{t}{1!} \int_{-\infty}^{\infty} x f(x) dx + \frac{t^2}{2!} \int_{-\infty}^{\infty} x^2 f(x) dx \dots + \frac{t^r}{r!} \int_{-\infty}^{\infty} x^r f(x) dx + \dots$$

$$M_X(t) = 1 + \frac{t}{1!}\mu'_1 + \frac{t^2}{2!}\mu'_2 + \cdots + \frac{t^r}{r!}\mu'_r + \cdots + \cdots$$

 $M_X(t)$ generates moments therefore it is moment generation function

Note:

If *X* is a discrete RV and if $M_X(t)$ is known, then $\mu'_r = \left[\frac{d^r}{dt^r}[M_X(t)]\right]_{t=0}$

If X is a continuous RV and if $M_X(t)$ is known, then $\mu'_r = 1$

$$= r! \times \text{ coeff of } t^r \text{ in } M_X(t)$$

Problems under MGF of discrete random variable

$$M_X(t) = \sum_x e^{tx} p(x)$$

If X is a discrete RV and if $M_X(t)$ is known, then $\mu'_r = \left[\frac{d^r}{dt^r}[M_X(t)]\right]_{t=0}$

1. Let *X* be the number occur when a die is thrown. Find the MGF mean and variance of X.

Solution:

x	ì	2	3	4	5	6
p(x)	1/6	1/6	1/6	1/6	1/6	1/6

NGINEER

(i)
$$M_X(t) = \sum_{x=1}^6 e^{tx} p(x)$$

$$= e^t P(1) + e^{2t} P(2) + e^{3t} P(3) + e^{4t} P(4) + e^{5t} P(5) + e^{6t} P(6)$$

$$= e^t \frac{1}{6} + e^{2t} \frac{1}{6} + e^{3t} \frac{1}{6} + e^{4t} \frac{1}{6} + e^{5t} \frac{1}{6} + e^{6t} \frac{1}{6}$$

$$M_X(t) = \frac{1}{6} [e^t + e^{2t} + e^{3t} + e^{4t} + e^{5t} + e^{6t}]$$

(ii)
$$E(X) = \left[\frac{d}{dt}M_X(t)\right]_{t=0} = \frac{1}{6}\left[e^t + 2e^{2t} + 3e^{3t} + 4e^{4t} + 5e^{5t} + 6e^{6t}\right]_{t=0}$$

$$OBS = \frac{1}{6}[1 + 2 + 3 + 4 + 5 + 6] = \frac{21}{6}$$

$$\Rightarrow E(X) = 3.5$$

$$E(X^{2}) = \left[\frac{d^{2}}{dt^{2}}[M_{X}(t)]\right]_{t=0}$$

$$= \frac{1}{6}[e^{t} + 4e^{2t} + 9e^{3t} + 16e^{4t} + 25e^{5t} + 36e^{6t}]$$

$$= \frac{1}{6}(1+4+9+16+25+36) = \frac{91}{6}$$
$$= 15.1$$

(iii) Variance of
$$X = E(X^2) - [E(X)]^2 = 15.1 - 12.25$$

$$\sigma_X = 2.85$$

2. Find the moment generating function for the distribution

where
$$(X = x) = \begin{cases} \frac{2}{3}; x = 1\\ \frac{1}{3}; x = 2 \end{cases}$$
. Also find its mean & variance, 0; otherwise

Solution:

The probability distribution of X is given by

,	x		2	
	p(x)	2/3	1/3	

$$\Rightarrow M_X(t) = E[e^{tx}] = \sum_{x=1}^2 e^{tx} p(x)$$

$$= e^{t}p(X=1) + e^{2t}p(X=2) = e^{t}\frac{2}{3} + e^{2t}\frac{1}{3}$$

$$\Rightarrow M_X(t) = \frac{1}{3}(2e^t + e^{2t})$$

$$\Rightarrow E(X) = M'_X(0)$$

$$= \left[\frac{d}{dt} \left[\frac{1}{3} (2e^t + e^{2t}) \right] \right]_{t=0}$$

$$= \frac{1}{3}(2e^t + 2e^{2t})$$

$$\Rightarrow E(X) = \frac{4}{3}$$

$$\Rightarrow E(X^{2}) = M_{X}''(0) = \left[\frac{d^{2}}{dt^{2}} \left[\frac{1}{3} (2e^{t} + e^{2t}) \right] \right]_{t=0}$$
$$= \left[\frac{d}{dt} \left[\frac{1}{3} (2e^{t} + 2e^{2t}) \right] \right]_{t=0}^{t=0}$$

$$= \left[\frac{1}{3} (2e^t + 4e^{2t})_{t=0} \right] = \frac{6}{3} = 2$$

Variance of
$$X = E(X^2) - [E(X)]^2 = 2 - \left(\frac{4}{3}\right)^2$$

$$\Rightarrow Var(X) = \frac{2}{9}$$

3. Let X be a RV with PMF $P(x) = \left(\frac{1}{2}\right)^x$; $x = 1, 2, 3, \dots$ Find MGF and hence

find mean and variance of X.

Solution:

(i)
$$M_X(t) = E[e^{tX}]$$
 OBSERVE OPTIMIZE OUTSPREAD
$$= \sum_{x=1}^{\infty} e^{tx} p(x)$$

$$= \sum_{x=1}^{\infty} e^{tx} \left(\frac{1}{2}\right)^x$$

$$=\sum_{x=1}^{\infty}\left(\frac{e^t}{2}\right)^x$$

$$= \left[\frac{e^t}{2} + \left(\frac{e^t}{2} \right)^2 + \left(\frac{e^t}{2} \right)^3 + \cdots \right]$$

$$= \frac{e^t}{2} \left(1 + \frac{e^t}{2} + \left(\frac{e^t}{2} \right)^2 + \cdots \right)$$

$$=\frac{e^t}{2}\left(1-\frac{e^t}{2}\right)^{-1}$$

$$=\frac{e^t}{2}\frac{e^t}{2-e^t}$$

$$\Rightarrow M_X(t) = \frac{e^t}{2 - e^t}$$

(ii)
$$E(X) = \left[\frac{d}{dt}[M_X(t)]\right]_{t=0}$$

$$= \left[\frac{d}{dt} \left(\frac{e^t}{2 - e^t} \right) \right]_{t=0}$$

$$= \left[\frac{(2-e^t)e^t - e^t(0-e^t)}{(2-e^t)^2} \right]_{t=0}$$

$$= \left[\frac{2e^{t} - e^{2t} + e^{2t}}{(2 - e^{t})^{2}}\right]_{t=0} \quad \because d\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^{2}}$$

$$= \left[\frac{2e^{t} - e^{2t} + e^{2t}}{(2 - e^{t})^{2}}\right]_{t=0} \quad \because d\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^{2}}$$

$$= \left[\frac{2e^t}{(2-e^t)^2} \right]_{t=0} = \frac{2}{1}$$

$$\Rightarrow E(X) = 2$$

$$E(X^2) = \left[\frac{d^2}{dt^2}[M_X(t)]\right]_{t=0}$$

$$= \left[\frac{d}{dt} \left(\frac{2e^t}{(2-e^t)^2} \right) \right]_{t=0}$$

$$= \left[\frac{(2-e^t)^2 2e^t - 2e^t 2(2-e^t)(-e^t)}{(2-e^t)^4} \right]_{t=0} = \frac{2+4}{1} = 6$$

(iii) Variance =
$$E(X^2) - [E(X)]^2 = 6 - 4$$

$$Var(X) = 2$$

Problems under MGF of discrete random variable

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

If X is a continuous RV and if $M_X(t)$ is known, then μ'_r

$$= r! \times \text{coeff of } t^r \text{ in } M_X(t)$$

1. If a random variable "X" has the MGF, $M_X(t) = \frac{2}{2-t}$, find the variance of X.

Solution:

Given
$$M_X(t) = \frac{2}{2-t} = 2(2-t)^{-1}$$

$$ERVE OPTIMIZE OUTSPREAD$$

$$M_X'(t) = -2(2-t)^{-2}(-1)$$

$$= 2(2-t)^{-2}$$

$$M_X'(t=0) = 2(2-0)^{-2} = \frac{2}{4} = \frac{1}{2}$$

$$M_{Y}^{"}(t) = -4(2-t)^{-3}(-1)$$

$$=4(2-t)^{-3}$$

$$M_X''(t=0) = 4(2-0)^{-3} = \frac{4}{8} = \frac{1}{2}$$

$$Var(X) = E(X^2) - E[(X)]^2$$

$$=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$$

2. Let X be a RV with PDF $f(x) = ke^{-2x}$, $x \ge 0$. Find (i) k, (ii) MGF, (iii) Mean

NGINEER

and (iv) variance

Solution:

Given
$$f(x) = ke^{-2x}$$
; $0 \le x < \infty$

(i) To find k

$$\Rightarrow \int_0^\infty f(x)dx = 1$$

$$\Rightarrow \int_0^\infty k e^{-2x} dx = 1$$

PLAULAM, KANYAKUMARI

$$\Rightarrow k \left[\frac{e^{-2x}}{-2} \right]_0^{\infty} = 1$$
OBSERVE OPTIMIZE OUTSPREAD

$$\Rightarrow \frac{k}{r^2}(e^{-\infty}-1)=1$$

$$\Rightarrow \frac{k}{2}(0-1) = 1$$

$$\Rightarrow \frac{k}{2} = 1$$

$$\Rightarrow k = 2$$

(ii)
$$M_X(t) = E[e^{tx}]$$

$$=\int_0^\infty e^{tx}f(x)dx$$

$$=2\int_{0}^{\infty}e^{tx}e^{-2x}dx=2\int_{0}^{\infty}e^{tx-2x}dx$$

$$=2\int_0^\infty e^{-(2-t)x}dx=2\left[\frac{e^{-(2-t)x}}{-(2-t)}\right]_0^\infty=2\left(0+\frac{1}{2-t}\right)$$

$$M_{\chi}(t) = \frac{2}{2-t}$$

(iii) To find Mean and Variance

$$M_X(t) = \frac{2}{2\left(1 - \frac{t}{2}\right)} = \left(1 - \frac{t}{2}\right)^{-1} = 1 + \frac{t}{2} + \frac{t^2}{2^2} + \cdots$$

Coefficient of $t = \frac{1}{2}$ Coefficient of $t^2 = \frac{1}{2^2}$

Mean $E(X) = \mu'_1 = 1! \times \text{coefficient of } t \Rightarrow E(X) = \frac{1}{2}$

$$E(X^2) = 2! \times \text{coefficient of } t^2 = 2 \times \frac{1}{2^2} = \frac{1}{2}$$

(iv) Variance =
$$E(X^2) - [E(X)]^2 = \frac{1}{2} - \frac{1}{4} = \frac{2-1}{4}$$

$$Var(X) = \frac{1}{4}$$

3. Let X be a continuous RV with PDF $f(x) = Ae^{\frac{-x}{3}}$; $x \ge 0$. Find (i) A, (ii)

MGF,(iii) Mean and (iv) variance

Solution:

Given
$$f(x) = Ae^{\frac{-x}{3}}$$
; $0 \le x \le \infty$

(i) To find A

$$\Rightarrow \int_0^\infty f(x) dx = 1$$

$$\Rightarrow \int_0^\infty A e^{\frac{-x}{3}} dx = 1$$

$$\Rightarrow A \left[\frac{e^{\frac{-x}{3}}}{\frac{-1}{3}} \right]_0^{\infty} = 1$$

$$\Rightarrow -3A(0-1)=1$$

$$\Rightarrow 3A = 1 \Rightarrow A = \frac{1}{3}$$

$$\therefore f(x) = \frac{1}{3}e^{\frac{-x}{3}}; 0 \le x \le \infty$$

(ii)
$$M_X(t) = E[e^{tx}] = \int_0^\infty e^{tx} f(x) dx = \frac{1}{3} \int_0^\infty e^{tx} e^{\frac{-x}{3}} dx$$

$$= \frac{1}{3} \int_0^\infty e^{tx - \frac{x}{3}} dx = \frac{1}{3} \int_0^\infty e^{-\left(\frac{1}{3} - t\right)x} dx = \frac{1}{3} \left[\frac{e^{-\left(\frac{1}{3} - t\right)x}}{-\left(\frac{1}{3} + t\right)} \right]_0^\infty$$

$$=\frac{1}{3}\left[0+\frac{1}{\frac{1}{3}-t}\right] = \frac{1}{3}\frac{1}{\frac{1-3t}{2}}$$

$$=(1-3t)^{-1}$$

(iii) To find mean and variance:

$$M_X(t) = (1 - 3t)^{-1}$$

$$= 1 + 3t + 9t^2 + 27t^3 + \cdots$$

coefficient of t = 3

coefficient of $t^2 = 9$

$$E(X) = 1! X$$
 coefficient of t in $M_X(t) = 1 X 3$

Mean = 3

$$E(X) = 2! X$$
 coefficient of t^2 in $M_X(t)$

$$= 2 \times 9 = 18$$

(iv) Variance =
$$E(X^2) - [E(X)]^2 = 18-9$$

$$Var(X) = 9$$

4. Let X be a continuous random variable with the pdf

$$f(x) = \begin{cases} x & \text{; } 0 < x < 1 \\ 2 - x & \text{; } 1 < x < 2 \text{. Find (i) MGF, (ii) Mean and variance.} \\ 0 & \text{; elsewhere} \end{cases}$$

^{BSERVE} OPTIMIZE OUTSP^{REP}

Solution:

Since X is defined in the region 0 < x < 2, X is a continuous RV.

$$M_X(t) = E[e^{tX}] = \int_0^2 e^{tx} f(x) dx$$

$$= \int_0^1 e^{tx} x dx + \int_1^2 e^{tx} (2 - x) dx$$

$$= \int_0^1 x e^{tx} dx + \int_1^2 (2 - x) e^{tx} dx$$

$$= \left[x \left(\frac{e^{tx}}{t} \right) - 1 \left(\frac{e^{tx}}{t^2} \right) \right]_0^1 + \left[(2 - x) \frac{e^{tx}}{t} - (-1) \frac{e^{tx}}{t^2} \right]_1^2$$

$$= \left[1\left(\frac{e^t}{t}\right) - 1\left(\frac{e^t}{t^2}\right) - \left(\frac{-1}{t^2}\right)\right] + \left[0 + \frac{e^{2t}}{t^2} - \frac{e^t}{t} - \frac{e^t}{t^2}\right]$$

$$= \left[\frac{e^t}{t} - \frac{e^t}{t^2} + \frac{1}{t^2} + \frac{e^{2t}}{t^2} - \frac{e^t}{t} - \frac{e^t}{t^2} \right] = \frac{1}{t^2} - \frac{2e^t}{t^2} + \frac{e^{2t}}{t^2}$$

$$M_X(t) = \frac{1 - 2e^t + e^{2t}}{t^2}$$

To find Mean and Variance:

$$M_X(t) = \frac{1}{t^2} \left[1 - 2 \left(1 + \frac{t}{1!} + \frac{t^2}{2!} + \frac{t^3}{3!} + \frac{t^4}{4!} + \cdots \right) + \left(1 + \frac{2t}{1!} + \frac{2^2 t^2}{2!} + \frac{2^3 t^3}{3!} + \frac{2^4 t^4}{4!} + \cdots \right) \right]$$

 $\mu'_r = r! \times \text{coefficient of } t^r$

Coefficient of $t = -\frac{2}{3!} + \frac{2^3}{31} = \frac{-2}{6} + \frac{8}{6} = 1$

OBSERVE OPTIMIZE OUTSPREAD

Coefficient of
$$t^2 = -\frac{2}{4!} + \frac{2^4}{4!} = \frac{14}{24} = \frac{7}{12}$$

$$\mu_1' = 1! \times \text{coefficient of } t$$

$$\mu'_1 = 1$$

ROHINI COLLEGEOF ENGINEERING AND TECHNOLOGY

Mean = 1

$$\mu'_2 = 2! \times \text{coefficient of } t^2; \mu'_2 = 2 \times \frac{7}{12} = \frac{7}{6}$$

Variance =
$$\mu'_2 - (\mu'_1)^2 = \frac{7}{6} - 1 = \frac{1}{6}$$

5. Let X be a continuous random variable with PDF $f(x) \frac{1}{2a}$; -a < x < a. Then find the M.G.F of X.

Solution:

Let *X* is a continuous random variable defined in -a < x < a.

$$M_{x}(t) = E[e^{tx}]$$

$$= \int_{-a}^{a} e^{tx} f(x) dx$$

$$= \int_{-a}^{a} e^{tx} \frac{1}{2a} dx$$

$$= \int_{-a}^{a} e^{tx} \frac{1}{2a} dx$$

$$= \frac{1}{2a} \left(\frac{e^{tx}}{t} \right)^a e^x - e^{-x} = 2\sin hx$$

 $= \frac{1}{2a} \left(\frac{e^{ta} - e^{-ta}}{t} \right)$

$$= \frac{1}{2a} \frac{2\sinh at}{t}$$

$$M_X(t) = \frac{\sinh at}{at}$$