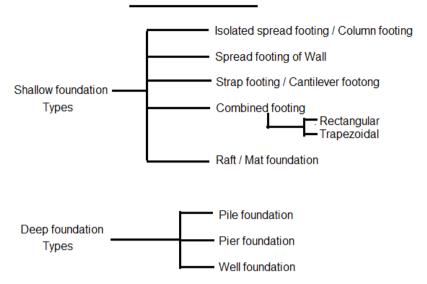
3.1 Types of Foundations – Shallow and Deep Foundations

It is a part of structural system that supports and anchors the superstructure of a building and transmits its loads directly to the earth. Foundation of a building as the name implies is the starting of a building construction on site really. Types of building, nature of soil and environmental conditions are the major determinant of type of foundation. Choosing a kind of foundation depends on, ground conditions, groundwater conditions, site – the environment (the buildings nearby) and structure of our building.

There are numerous reasons a foundation is provided, some of which are:

- The most crucial purpose of providing Foundation is Structural Stability. Strength of the foundation determines the stability of the structure to be constructed.
- A properly designed and the constructed foundation provide an even surface for the development of superstructure at a proper level at over a firm bed.
- A well-designed foundation prevents the lateral movement of the supporting material (which is the soil in this case) and thus ensuring the safety of the superstructure from the detrimental effects of the lateral movements of soil.
- The foundation serves the purpose of completely distributing the loads from the structure to a
 large base area, and then the soil underneath. This uniform transfer of loads helps in avoiding
 unequal settlement of the building, which is one of the detrimental defects in building
 construction.

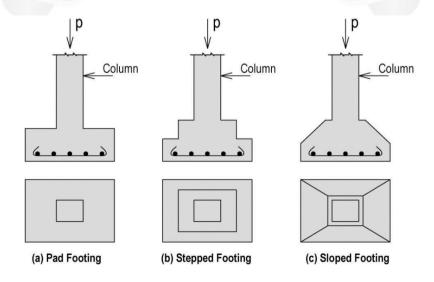

Types of Foundation: -

- 1. Shallow foundation: If the depth of foundation is less than the width of foundation then it is known as Shallow or stepped Foundation. It can be used where the bearing capacity of soil on which the structure is to be constructed is maximum. Minimum depth of this Foundation is 800mm and maximum depth not to be taken more than 4 meters.
- 2. Deep foundation: If the depth of footing greater or equal to the Width of footing, it is known as the deep Foundation. Deep Foundation is used where the bearing capacity of the soil is very low. The load coming from the superstructure is further transmitted vertically to the soil.

Difference between Foundation and Footing:

- Foundation is a structure which transfers the loads from the superstructure to the ground, while footing is the foundation which is in contact with the earth.
- A foundation can be shallow and deep, while a footing is a type of a shallow foundation. so, all footings are foundations but all foundations cannot be footings.

Types of foundation

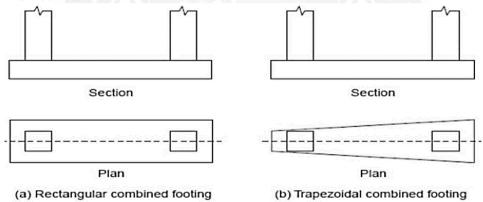


Shallow Foundations

- They are usually located no more than 6 ft below the lowest finished floor.
- A shallow foundation system generally used when the soil closes the ground surface has sufficient bearing capacity and Underlying weaker strata do not result in excessive settlement.
- The shallow foundations are commonly used most economical foundation systems

Types of spread footing: (either for Column or for Wall)

- Single pad footing.
- Stepped footing for a column.
- Sloped footing for a column.
- Wall footing without step.
- Stepped footing for walls.
- Grillage foundation.
- 1. Isolated spread footings under individual columns which can be square, rectangular or circular.
- 2. Wall footing is a continuous slab strip along the length of wall


- **3.** Combined footings support two or more columns. These can be rectangular or trapezoidal in plan. A combined footing is necessary in following three reasons:
- Columns are placed **very close to each other** so that their individual footings overlap each other
- When **bearing capacity of soil is less** so it is required to have a more spread area for footing and so footing of adjacent column may overlap
- When external column is **close to property line**, it is not possible to provide isolated footing for that column because it may be extended beyond the property line and so combined footing solves the problem
- The essential condition to satisfy in combined footing is that, centroid of footing area should coincide with resultant of column loads so that soil pressure distribution is uniform under soil.

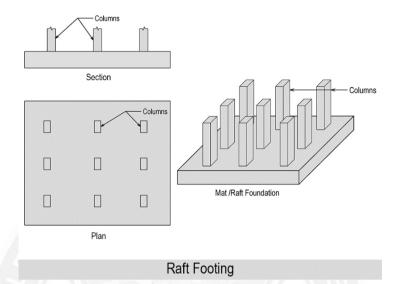
Types of combined footing:

- Combined footing (Rectangular):
- Combined footing (Trapezoidal):

If outer column near property line carries a heavier load

- Strap footing
- Raft / mat foundation

4. Strap or Cantilever Footing


- Strap footings are similar to combined footings.
- Reasons for considering or choosing strap footing are identical to the combined one.
- In strap footing, the foundation under the columns is built individually and connected by a strap beam. Generally, when the edge of the footing cannot be extended beyond the property line, the exterior footing is connected by a strap beam with interior footing.

5. Raft / mat foundation:

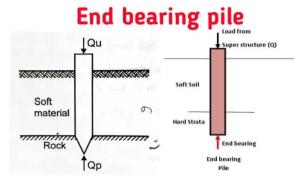
- This is a large continuous footing supporting all the columns of the structure.
- This is used when soil conditions are poor but piles are not used.
- Raft foundation is provided
- When **load** transmitted by **columns** are so **heavy** or **allowable soil pressure** are so small that individual footings if provided would **cover more than about half** of the area, then it is better to provide a continuous footing called raft foundation under all columns and walls
- Raft foundations are used to reduce settlement of structure located above heavy compressible deposits i.e. they control differential settlement

Types of raft foundation:

- Solid raft (A continuous slab covering all the columns)
- **Ribbed raft** (mat with a central hollow region when all the columns are connected by a continuous beam which gets supported on the raft slab

Deep Foundation

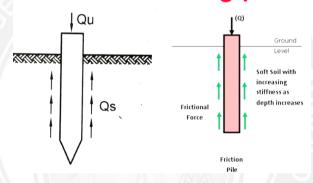
1. Pile Foundation


- A pile is a slender column provided with a cap to receive the column load and transfer it to undelaying soil layer / layers. Pile foundation is a common type of deep foundation.
- Pile is a slender member with a small cross-sectional area compared to its length.
- It is used to transmit foundation loads to a deeper soil or rock strata when the bearing capacity of soil near the surface is relatively low.
- Pile transmits load either by skin friction or bearing.
- Piles are also used to resist structures against uplift and provide structural stability against lateral and overturning forces.
- They are used to reduce cost, and when as per soil condition considerations, it is
 desirable to transmit loads to soil strata which are beyond the reach of shallow
 foundations.
- Pile foundations are economical when Soil with higher bearing capacity is at a greater depth. When the foundation is subjected to a heavily concentrated load The foundation is subjected to strong uplift force Lateral forces are relatively pre dominant. When there are chances of construction of irrigation canals in the nearby area. Expansive soil like black cotton soil are present at the site in marshy places where soil is wet soil/ soft soil/ water logged/ low laying area When the topsoil layer is compressible in nature. In the case of bridges, when the scouring is more in the river bed.

In this type of foundation, the load is transmitted by a vertical member. This vertical member is known as a pile. These piles are generally made of steel, concrete and wooden. These days precast members are used but we can create these members on site as well.

According to function pile foundation are of following types.

- a) Bearing pile
- b) Friction pile


Bearing pile: They are driven till hard Strata or layer of Rock beds. The load is transmitted by columns to the hard layer of soil.

Friction pile:

These piles are used where the soil is soft at a considerable depth. The load is transferred to the soft soil due to the friction produced between the soft soil which is in contact with these piles.

2. Pier foundation

- Pier is a deep foundation structure above ground level that transmits a more massive load, which cannot be carried by shallow foundations.
- It is usually shallower than piles.
- Pier foundation is a cylindrical structural member that transfer heavy load from superstructure to the soil by end bearing.
- Unlike piles, it can only transfer load by end bearing only and by not skin friction.

Difference between Pile and Pier foundation

Piles are always below the ground level	Piers are always above the ground		
Larger in length and smaller in diameter	Smaller in length and larger in diameter		
Adopted when there is no hard bearing strata	Adopted when there is hard bearing strata of		
of soil available at reasonable depth	soil available at reasonable depth but other		
	types of foundation construction is not		
	economical		
Piles are driven through overburden soil into	Pier is drilled by drilling machine		
load bearing strata			
Transfers full load through both bearing and	Transfers full load through bearing action		
friction action only	only		
Constructed at greater depth	Constructed at shallower depth		
Resist greater intensity of load	Resist smaller intensity of load		

Classification of Pile foundation:

Based on Function		Based on construction	Classification of
or Use:	Based on Materials		Piles based on the
of Use.	Materials	process	effect of Installation
End Bearing Piles:	Timber Piles	a) Bored Piling:	a) Displacement pile
These are the pile	As the name	Bored piles are installed	a) Displacement plic
used to transfer loads	suggests these	by auguring into the	Driven Cast in Situ
through water or soft	piles are made	ground forming a hole	concrete pile and
soil to a suitable	up of wood. For	into which concrete can	Driven Precast
bearing stratum.	these piles,	be poured, thereby casting	concrete pile
Friction Piles:	seasonal Timber	the pile in position.	concrete plic
This type of pile		b) Driven Piling:	b) Non- isplacement
utilizes the frictional	The diameter of	Driven piles are driven or	pile
resistance force	the timber pile	hammered into the ground	Bored Cast in Situ
between the pile	varies in	with the use of	concrete pile, Bored
surface and adjacent	between 20 to 50	vibration	Precast concrete pil
soil to transfer the	cm.	c) Screw Piling	Trecast concrete pir
superstructure load.	Concrete Piles	Screw piles are wound	
Combined end	These piles are	into the ground, much like	
bearing and friction	made up of	a screw is wound into	
pile:	concrete. The	wood.	
This pile transfers the	diameter of these	d) Mini Piling	
super-imposed load	pile varies from	Mini piling is a variation	
both through side	30 to 50 cm	on piling that uses a	
friction as well as end	Concrete piles	narrower diameter.	
bearing.	are anufactured	narrower diameter.	
Compactor Piles:	either by precast		
These are used to	or cast in situ		
compact loose	method.		
granular soil thus	Steel Piles		
increasing their	These files are		
bearing capacity.	generally in	MARK	
Batter pile:	shape of 'I' or	ANYAKO	
A pile driven at an	hollow section.		
angle with the vertical	It can be easily		
to resist a lateral force	driven in the soil	- 40	
Sheet Piles:	because it has a	UZE OUTSPREAD	
Used as impervious	very small cross-	1126	
cut-off to reduce	sectional area.		
seepage and uplift	Composite Piles		
under hydraulic	When the piles		
structures.	are made from		
Anchor pile:	more than one		
It provides anchorage	material they are		
against horizontal pull	known as		
from sheet piling	composite pile.		
Anchor piles can	These piles are		
transfer both	made from		
compressive and	concrete and		
tensile forces as well	wood.		
as bending moments			
to the ground			